Question
write in exponential form \( \sqrt[3]{x^{2}} \) \( \sqrt[4]{x^{5} 4^{6}} \) \( 5 \sqrt[4]{x^{15}} \)
Ask by Park Paul. in South Africa
Jan 22,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\[
\begin{align*}
\sqrt[3]{x^{2}} &= x^{\frac{2}{3}} \\
\sqrt[4]{x^{5} \cdot 4^{6}} &= x^{\frac{5}{4}} \cdot 4^{\frac{3}{2}} \\
5 \sqrt[4]{x^{15}} &= 5x^{\frac{15}{4}}
\end{align*}
\]
Solution
Certainly! Let's rewrite each expression in exponential form using fractional exponents.
1. **\(\sqrt[3]{x^{2}}\)**
The cube root can be expressed as an exponent of \( \frac{1}{3} \):
\[
\sqrt[3]{x^{2}} = x^{\frac{2}{3}}
\]
2. **\(\sqrt[4]{x^{5} \cdot 4^{6}}\)**
The fourth root can be expressed as an exponent of \( \frac{1}{4} \). Apply the exponent to each factor inside the root:
\[
\sqrt[4]{x^{5} \cdot 4^{6}} = (x^{5})^{\frac{1}{4}} \cdot (4^{6})^{\frac{1}{4}} = x^{\frac{5}{4}} \cdot 4^{\frac{6}{4}} = x^{\frac{5}{4}} \cdot 4^{\frac{3}{2}}
\]
Alternatively, it can also be written as:
\[
\sqrt[4]{x^{5} \cdot 4^{6}} = (x^{5} \cdot 4^{6})^{\frac{1}{4}}
\]
3. **\(5 \sqrt[4]{x^{15}}\)**
The fourth root of \(x^{15}\) is expressed as \(x^{\frac{15}{4}}\), and it's multiplied by 5:
\[
5 \sqrt[4]{x^{15}} = 5x^{\frac{15}{4}}
\]
**Summary:**
\[
\begin{align*}
\sqrt[3]{x^{2}} &= x^{\frac{2}{3}} \\
\sqrt[4]{x^{5} \cdot 4^{6}} &= x^{\frac{5}{4}} \cdot 4^{\frac{3}{2}} \\
5 \sqrt[4]{x^{15}} &= 5x^{\frac{15}{4}}
\end{align*}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To express \( \sqrt[3]{x^{2}} \) in exponential form, we rewrite it as \( x^{2/3} \). For \( \sqrt[4]{x^{5} 4^{6}} \), we convert each part into exponential form: \( \sqrt[4]{x^{5}} = x^{5/4} \) and \( \sqrt[4]{4^{6}} = 4^{6/4} = 4^{3/2} \). Therefore, \( \sqrt[4]{x^{5} 4^{6}} = x^{5/4} \cdot 4^{3/2} \). Lastly, for \( 5 \sqrt[4]{x^{15}} \), we can express it as \( 5 \cdot x^{15/4} \).