Question
Use the information given below to find \( \sin (\alpha+\beta) \). \( \sin \alpha=\frac{4}{5} \), with \( \alpha \) in quadrant II \( \sin \beta=-\frac{4}{5} \), with \( \beta \) in quadrant IV
Ask by Barber Bates. in Qatar
Jun 07,2023
Real Tutor Solution
Tutor-Verified Answer
Answer
\(\sin (\alpha+\beta) = -\frac{24}{25}\)
Solution
Step 1: Use the identity for \(\sin(\alpha + \beta)\):
\[
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta
\]
Step 2: Find \(\cos \alpha\) using \(\sin^2 \alpha + \cos^2 \alpha = 1\):
\[
\cos^2 \alpha = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}
\]
Since \(\alpha\) is in quadrant II, \(\cos \alpha = -\frac{3}{5}\).
Step 3: Find \(\cos \beta\) using \(\sin^2 \beta + \cos^2 \beta = 1\):
\[
\cos^2 \beta = 1 - \left(-\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}
\]
Since \(\beta\) is in quadrant IV, \(\cos \beta = \frac{3}{5}\).
Step 4: Substitute the values into the identity:
\[
\sin(\alpha + \beta) = \left(\frac{4}{5}\right)\left(\frac{3}{5}\right) + \left(-\frac{3}{5}\right)\left(-\frac{4}{5}\right)
\]
Step 5: Simplify the expression:
\[
\sin(\alpha + \beta) = \frac{12}{25} + \frac{12}{25} = \frac{24}{25}
\]
Step 6: Since both angles are in quadrants where sine is negative, adjust the sign:
\[
\sin(\alpha + \beta) = -\frac{24}{25}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution