Question
upstudy study bank question image url

4-) \( \left(20+20\right. \) point For given matrix \( A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right] \) a) Find characteristic equation. b) Find eigenvalues and eigenvectors. c) If possible find an invertible matrix \( P \) such that \( D=P^{-1} A P \) is diagonal and write this diagonal matrix \( D \). d) Find \( A^{35} \). e) Find \( A^{-1} \) by using Cayley Hamilton Theorem.

Ask by Frank Chang. in Turkey
Jan 18,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) Karakteristik denklem: \( \lambda^3 - \lambda^2 - 2\lambda = 0 \) b) Özdeğerler: \( \lambda_1 = 0 \), \( \lambda_2 = 2 \), \( \lambda_3 = -1 \) Özvektörler: - \( \mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \) - \( \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \) - \( \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \) c) İnvertible matris \( P \) ve diagonal matris \( D \): \[ P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix} \] ve \( D = P^{-1} A P \) d) \( A^{35} = P D^{35} P^{-1} \), burada \( D^{35} \) hesaplanabilir. e) \( A^{-1} = \frac{1}{2}(A - I) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

To tackle the problems for the given matrix \( A \), let's go through them step by step: ### a) Find the Characteristic Equation The characteristic equation of a matrix \( A \) is found using the determinant of \( A - \lambda I = 0 \). For matrix \( A = \begin{bmatrix}-1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{bmatrix} \): \[ A - \lambda I = \begin{bmatrix}-1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 1 & 1 - \lambda\end{bmatrix} \] Calculating the determinant, we have: \[ \text{det}(A - \lambda I) = (-1 - \lambda) \cdot \text{det} \begin{bmatrix}1 - \lambda & 1 \\ 1 & 1 - \lambda\end{bmatrix} \] \[ = (-1 - \lambda)((1 - \lambda)(1 - \lambda) - 1) = (-1 - \lambda)(\lambda^2 - 2\lambda) \] So, the characteristic equation is: \[ (-1 - \lambda)(\lambda^2 - 2 \lambda) = 0 \] ### b) Find Eigenvalues and Eigenvectors The eigenvalues are obtained from the characteristic equation: 1. \( \lambda_1 = -1 \) 2. From \( \lambda^2 - 2\lambda = 0 \), we find \( \lambda_2 = 0 \) and \( \lambda_3 = 2 \). Now let's find the eigenvectors: - **For \( \lambda_1 = -1 \)**: \[ (A + I)x = 0 \text{ leading to } \begin{bmatrix}0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{bmatrix} \Rightarrow \text{Eigenvector } v_1 = \begin{bmatrix}1 \\ 0 \\ 0\end{bmatrix} \] - **For \( \lambda_2 = 0 \)**: \[ Ax = 0 \Rightarrow \begin{bmatrix}-1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = 0 \Rightarrow x_1 = 0, x_2 = -x_3 \text{, choose } x_3 = 1 \Rightarrow \text{Eigenvector } v_2 = \begin{bmatrix}0 \\ 1 \\ -1\end{bmatrix} \] - **For \( \lambda_3 = 2 \)**: \[ (A - 2I)x = 0 \Rightarrow \begin{bmatrix}-3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1\end{bmatrix} \Rightarrow x_1 = 0, x_2 = x_3 \text{, choose } x_3 = 1 \Rightarrow \text{Eigenvector } v_3 = \begin{bmatrix}0 \\ 1 \\ 1\end{bmatrix} \] ### c) Find \( P \) such that \( D = P^{-1}AP \) Using the eigenvectors as columns of \( P \): \[ P = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1\end{bmatrix} \] We can calculate \( D = P^{-1}AP \) where \( D \) will be a diagonal matrix with eigenvalues on the diagonal: \[ D = \begin{bmatrix}-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{bmatrix} \] ### d) Find \( A^{35} \) Since \( A \) can be diagonalized as \( A = PDP^{-1} \), we can use \( D \) to simplify \( A^{35} \): \[ A^{35} = PD^{35}P^{-1} \] Calculating \( D^{35} \): \[ D^{35} = \begin{bmatrix}(-1)^{35} & 0 & 0 \\ 0

Related Questions

Numéro d'étudiant : La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025

Latest Other Questions

Numéro d'étudiant : 22007890 La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. \( ~ \) trer que l'endomorphisme \( f \) est diagonalisable. Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Numéro d'étudiant : La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy