Answer
- Part (a): \(\left(\frac{8}{19}\right)^{17}\) or approximately \(4.108834 \times 10^{-7}\)
- Part (b): \(91125\)
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\left(\frac{\left(\frac{8}{19}\right)^{17}}{\left(\frac{8}{19}\right)^{2}}\right)\left(\frac{8}{19}\right)^{2}\)
- step1: Multiply by \(a^{-n}:\)
\(\left(\left(\frac{8}{19}\right)^{17}\left(\frac{8}{19}\right)^{-2}\right)\left(\frac{8}{19}\right)^{2}\)
- step2: Multiply the numbers:
\(\frac{8^{15}}{19^{15}}\times \left(\frac{8}{19}\right)^{2}\)
- step3: Evaluate the power:
\(\frac{8^{15}}{19^{15}}\times \frac{8^{2}}{19^{2}}\)
- step4: Multiply the fractions:
\(\frac{8^{15}\times 8^{2}}{19^{15}\times 19^{2}}\)
- step5: Multiply:
\(\frac{8^{17}}{19^{17}}\)
Calculate or simplify the expression \( (3^8 * 3^3 * 5^8 * 5^0) / ((3 * 5)^5) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 5^{0}\right)}{\left(\left(3\times 5\right)^{5}\right)}\)
- step1: Evaluate the power:
\(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 1\right)}{\left(\left(3\times 5\right)^{5}\right)}\)
- step2: Evaluate:
\(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 1\right)}{\left(3\times 5\right)^{5}}\)
- step3: Remove the parentheses:
\(\frac{3^{8}\times 3^{3}\times 5^{8}\times 1}{\left(3\times 5\right)^{5}}\)
- step4: Multiply the numbers:
\(\frac{3^{8}\times 3^{3}\times 5^{8}\times 1}{15^{5}}\)
- step5: Multiply:
\(\frac{3^{11}\times 5^{8}}{15^{5}}\)
- step6: Factor the expression:
\(\frac{3^{11}\times 5^{8}}{3^{5}\times 5^{5}}\)
- step7: Reduce the fraction:
\(3^{6}\times 5^{3}\)
- step8: Expand the expression:
\(729\times 5^{3}\)
- step9: Expand the expression:
\(729\times 125\)
- step10: Multiply the numbers:
\(91125\)
Let's solve each part step by step.
### Part (a)
We need to simplify the expression:
\[
\left[\left(\frac{8}{19}\right)^{17} \div\left(\frac{8}{19}\right)^{2}\right] \times\left(\frac{8}{19}\right)^{2}
\]
1. **Division of Exponents**: When dividing powers with the same base, we subtract the exponents:
\[
\left(\frac{8}{19}\right)^{17} \div \left(\frac{8}{19}\right)^{2} = \left(\frac{8}{19}\right)^{17 - 2} = \left(\frac{8}{19}\right)^{15}
\]
2. **Multiplication of Exponents**: Now we multiply this result by \(\left(\frac{8}{19}\right)^{2}\):
\[
\left(\frac{8}{19}\right)^{15} \times \left(\frac{8}{19}\right)^{2} = \left(\frac{8}{19}\right)^{15 + 2} = \left(\frac{8}{19}\right)^{17}
\]
Thus, the simplified result for part (a) is:
\[
\left(\frac{8}{19}\right)^{17} \quad \text{or approximately } 4.108834 \times 10^{-7}
\]
### Part (b)
We need to simplify the expression:
\[
\frac{3^{8} \times 3^{3} \times 5^{8} \times 5^{0}}{(3 \times 5)^{5}}
\]
1. **Combine the Numerator**: We can combine the powers of the same base:
\[
3^{8} \times 3^{3} = 3^{8 + 3} = 3^{11}
\]
And since \(5^{0} = 1\), we have:
\[
5^{8} \times 5^{0} = 5^{8}
\]
Therefore, the numerator becomes:
\[
3^{11} \times 5^{8}
\]
2. **Simplify the Denominator**: The denominator can be simplified as follows:
\[
(3 \times 5)^{5} = 3^{5} \times 5^{5}
\]
3. **Combine the Fraction**: Now we can write the entire expression:
\[
\frac{3^{11} \times 5^{8}}{3^{5} \times 5^{5}} = \frac{3^{11}}{3^{5}} \times \frac{5^{8}}{5^{5}} = 3^{11 - 5} \times 5^{8 - 5} = 3^{6} \times 5^{3}
\]
4. **Calculate the Final Result**: Now we can calculate \(3^{6} \times 5^{3}\):
\[
3^{6} = 729 \quad \text{and} \quad 5^{3} = 125
\]
Therefore:
\[
3^{6} \times 5^{3} = 729 \times 125 = 91125
\]
Thus, the simplified result for part (b) is:
\[
91125
\]
### Final Results
- Part (a): \(\left(\frac{8}{19}\right)^{17}\) or approximately \(4.108834 \times 10^{-7}\)
- Part (b): \(91125\)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution