Question
upstudy study bank question image url

(a) \( \left[\left(\frac{8}{19}\right)^{17} \div\left(\frac{8}{19}\right)^{2}\right] \times\left(\frac{8}{19}\right)^{2} \) (b) \( \frac{3^{8} \times 3^{3} \times 5^{8} \times 5^{0}}{(3 \times 5)^{5}} \)

Ask by Spencer French. in India
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

- Part (a): \(\left(\frac{8}{19}\right)^{17}\) or approximately \(4.108834 \times 10^{-7}\) - Part (b): \(91125\)

Solution

Calculate the value by following steps: - step0: Calculate: \(\left(\frac{\left(\frac{8}{19}\right)^{17}}{\left(\frac{8}{19}\right)^{2}}\right)\left(\frac{8}{19}\right)^{2}\) - step1: Multiply by \(a^{-n}:\) \(\left(\left(\frac{8}{19}\right)^{17}\left(\frac{8}{19}\right)^{-2}\right)\left(\frac{8}{19}\right)^{2}\) - step2: Multiply the numbers: \(\frac{8^{15}}{19^{15}}\times \left(\frac{8}{19}\right)^{2}\) - step3: Evaluate the power: \(\frac{8^{15}}{19^{15}}\times \frac{8^{2}}{19^{2}}\) - step4: Multiply the fractions: \(\frac{8^{15}\times 8^{2}}{19^{15}\times 19^{2}}\) - step5: Multiply: \(\frac{8^{17}}{19^{17}}\) Calculate or simplify the expression \( (3^8 * 3^3 * 5^8 * 5^0) / ((3 * 5)^5) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 5^{0}\right)}{\left(\left(3\times 5\right)^{5}\right)}\) - step1: Evaluate the power: \(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 1\right)}{\left(\left(3\times 5\right)^{5}\right)}\) - step2: Evaluate: \(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 1\right)}{\left(3\times 5\right)^{5}}\) - step3: Remove the parentheses: \(\frac{3^{8}\times 3^{3}\times 5^{8}\times 1}{\left(3\times 5\right)^{5}}\) - step4: Multiply the numbers: \(\frac{3^{8}\times 3^{3}\times 5^{8}\times 1}{15^{5}}\) - step5: Multiply: \(\frac{3^{11}\times 5^{8}}{15^{5}}\) - step6: Factor the expression: \(\frac{3^{11}\times 5^{8}}{3^{5}\times 5^{5}}\) - step7: Reduce the fraction: \(3^{6}\times 5^{3}\) - step8: Expand the expression: \(729\times 5^{3}\) - step9: Expand the expression: \(729\times 125\) - step10: Multiply the numbers: \(91125\) Let's solve each part step by step. ### Part (a) We need to simplify the expression: \[ \left[\left(\frac{8}{19}\right)^{17} \div\left(\frac{8}{19}\right)^{2}\right] \times\left(\frac{8}{19}\right)^{2} \] 1. **Division of Exponents**: When dividing powers with the same base, we subtract the exponents: \[ \left(\frac{8}{19}\right)^{17} \div \left(\frac{8}{19}\right)^{2} = \left(\frac{8}{19}\right)^{17 - 2} = \left(\frac{8}{19}\right)^{15} \] 2. **Multiplication of Exponents**: Now we multiply this result by \(\left(\frac{8}{19}\right)^{2}\): \[ \left(\frac{8}{19}\right)^{15} \times \left(\frac{8}{19}\right)^{2} = \left(\frac{8}{19}\right)^{15 + 2} = \left(\frac{8}{19}\right)^{17} \] Thus, the simplified result for part (a) is: \[ \left(\frac{8}{19}\right)^{17} \quad \text{or approximately } 4.108834 \times 10^{-7} \] ### Part (b) We need to simplify the expression: \[ \frac{3^{8} \times 3^{3} \times 5^{8} \times 5^{0}}{(3 \times 5)^{5}} \] 1. **Combine the Numerator**: We can combine the powers of the same base: \[ 3^{8} \times 3^{3} = 3^{8 + 3} = 3^{11} \] And since \(5^{0} = 1\), we have: \[ 5^{8} \times 5^{0} = 5^{8} \] Therefore, the numerator becomes: \[ 3^{11} \times 5^{8} \] 2. **Simplify the Denominator**: The denominator can be simplified as follows: \[ (3 \times 5)^{5} = 3^{5} \times 5^{5} \] 3. **Combine the Fraction**: Now we can write the entire expression: \[ \frac{3^{11} \times 5^{8}}{3^{5} \times 5^{5}} = \frac{3^{11}}{3^{5}} \times \frac{5^{8}}{5^{5}} = 3^{11 - 5} \times 5^{8 - 5} = 3^{6} \times 5^{3} \] 4. **Calculate the Final Result**: Now we can calculate \(3^{6} \times 5^{3}\): \[ 3^{6} = 729 \quad \text{and} \quad 5^{3} = 125 \] Therefore: \[ 3^{6} \times 5^{3} = 729 \times 125 = 91125 \] Thus, the simplified result for part (b) is: \[ 91125 \] ### Final Results - Part (a): \(\left(\frac{8}{19}\right)^{17}\) or approximately \(4.108834 \times 10^{-7}\) - Part (b): \(91125\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

For (a), we can simplify the expression using properties of exponents. When dividing powers with the same base, you subtract the exponents: \( \left(\frac{8}{19}\right)^{17-2} = \left(\frac{8}{19}\right)^{15} \). Then, multiplying by \( \left(\frac{8}{19}\right)^{2} \) means we add the exponents: \( \left(\frac{8}{19}\right)^{15 + 2} = \left(\frac{8}{19}\right)^{17} \). For (b), we can also use properties of exponents here. The numerator simplifies to \( 3^{8+3} \times 5^{8} = 3^{11} \times 5^{8} \). The denominator \( (3 \times 5)^{5} = 3^{5} \times 5^{5} \). So, we rewrite the expression as \( \frac{3^{11} \times 5^{8}}{3^{5} \times 5^{5}} \), which simplifies to \( 3^{11-5} \times 5^{8-5} = 3^{6} \times 5^{3} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy