Question
upstudy study bank question image url

\( \begin{array}{l}\text { The integral in this exercise converges. Evaluate the integral without using a table. } \\ \int_{-\infty}^{0} \theta e^{\theta} \mathrm{d} \theta \\ 0\end{array} e^{\theta} \mathrm{d} \theta=\square \) (Type an exact answer.)

Ask by Bush Lang. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral \( \int_{-\infty}^{0} \theta e^{\theta} d\theta \) equals -1.

Solution

Calculate the integral \( \int_{-\infty}^{0} \theta e^{\theta} d\theta \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int_{-\infty}^{0} \theta e^{\theta } d\theta\) - step1: Rewrite the improper integral: \(\lim _{a\rightarrow -\infty}\left(\int_{a}^{0} \theta e^{\theta } d\theta\right)\) - step2: Evaluate the integral: \(\lim _{a\rightarrow -\infty}\left(-1-ae^{a}+e^{a}\right)\) - step3: Rewrite the expression: \(\lim _{a\rightarrow -\infty}\left(-1\right)+\lim _{a\rightarrow -\infty}\left(-ae^{a}\right)+\lim _{a\rightarrow -\infty}\left(e^{a}\right)\) - step4: Calculate: \(-1+0+0\) - step5: Calculate: \(-1+0\) - step6: Calculate: \(-1\) The integral \( \int_{-\infty}^{0} \theta e^{\theta} d\theta \) evaluates to -1.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To evaluate the integral \( \int_{-\infty}^{0} \theta e^{\theta} \mathrm{d} \theta \), we can use integration by parts. Let's set \( u = \theta \) and \( dv = e^{\theta} d\theta \). Then, we find \( du = d\theta \) and \( v = e^{\theta} \). Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int \theta e^{\theta} d\theta = \theta e^{\theta} - \int e^{\theta} d\theta \] Now we compute the remaining integral: \[ \int e^{\theta} d\theta = e^{\theta} \] Substituting back, we get: \[ \int \theta e^{\theta} d\theta = \theta e^{\theta} - e^{\theta} + C = e^{\theta}(\theta - 1) + C \] To evaluate the definite integral, we evaluate \( e^{\theta}(\theta - 1) \) at the bounds from \(-\infty\) to \(0\): At \( \theta = 0 \): \[ e^{0}(0 - 1) = -1 \] At \( \theta = -\infty \): As \( \theta \to -\infty \), \( e^{\theta} \to 0 \) and \( \theta - 1 \to -\infty \), thus \( e^{\theta}(\theta - 1) \to 0 \). So we find: \[ \int_{-\infty}^{0} \theta e^{\theta} d\theta = \left[ e^{\theta}(\theta - 1) \right]_{-\infty}^{0} = -1 - 0 = -1 \] The value of the integral is: \[ \boxed{-1} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy