Question
upstudy study bank question image url

Write each number in the form \( \frac{a}{b} \) where \( a \) and \( b \in \mathbb{Z} \) and \( a \) and \( b \) have no common factors. \( \begin{array}{ll}\text { a) } \frac{2}{3} \times \frac{6}{5} & \text { b) } \frac{-15}{8} \times \frac{12}{10} \\ \text { c) }-1 \frac{3}{4} \times \frac{8}{9} & \text { d) } 2 \frac{4}{5} \times \frac{-10}{12} \\ \text { e) } \frac{4}{6} \div \frac{4}{3} & \text { f) } \frac{-6}{25} \div \frac{5}{12} \\ \text { g) } \frac{1}{2}+\frac{1}{3}+\frac{1}{4} & \text { h) } 2 \frac{2}{3}+1 \frac{1}{4}-3 \frac{1}{5} \\ \text { i) } \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4}+\frac{4}{5} \div \frac{1}{2} & \text { j) } \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4}+\frac{4}{5} \div 2 \\ \text { k) } \frac{2}{3} \div\left(\frac{3}{4} \div \frac{5}{4}\right)-\frac{4}{3} \div \frac{6}{2} & \text { 1) } \frac{3}{2} \div \frac{3}{4} \times\left(\frac{5}{4}-\frac{4}{5}\right) \div \frac{1}{2}\end{array} \)

Ask by Hobbs Mckenzie. in South Africa
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified answers for each expression: a) \( \frac{4}{5} \) b) \( -\frac{9}{4} \) c) \( -\frac{14}{9} \) d) \( -\frac{7}{3} \) e) \( \frac{1}{2} \) f) \( -\frac{72}{125} \) g) \( \frac{13}{12} \) h) \( \frac{43}{60} \) i) \( 2 \) or \( \frac{2}{1} \) j) \( \frac{10}{9} \) k) \( \frac{2}{3} \) 1) \( \frac{9}{5} \)

Solution

Sure! Let's simplify each expression and write the result in the form \( \frac{a}{b} \) where \( a \) and \( b \) are integers with no common factors. ### a) \( \frac{2}{3} \times \frac{6}{5} \) \[ \frac{2}{3} \times \frac{6}{5} = \frac{2 \times 6}{3 \times 5} = \frac{12}{15} = \frac{4}{5} \] **Answer:** \( \frac{4}{5} \) --- ### b) \( \frac{-15}{8} \times \frac{12}{10} \) \[ \frac{-15}{8} \times \frac{12}{10} = \frac{-15 \times 12}{8 \times 10} = \frac{-180}{80} = \frac{-9}{4} \] **Answer:** \( -\frac{9}{4} \) --- ### c) \( -1 \frac{3}{4} \times \frac{8}{9} \) First, convert the mixed number to an improper fraction: \[ -1 \frac{3}{4} = -\frac{7}{4} \] Then multiply: \[ -\frac{7}{4} \times \frac{8}{9} = \frac{-56}{36} = \frac{-14}{9} \] **Answer:** \( -\frac{14}{9} \) --- ### d) \( 2 \frac{4}{5} \times \frac{-10}{12} \) Convert the mixed number to an improper fraction: \[ 2 \frac{4}{5} = \frac{14}{5} \] Then multiply: \[ \frac{14}{5} \times \frac{-10}{12} = \frac{-140}{60} = \frac{-7}{3} \] **Answer:** \( -\frac{7}{3} \) --- ### e) \( \frac{4}{6} \div \frac{4}{3} \) Division by a fraction is equivalent to multiplication by its reciprocal: \[ \frac{4}{6} \div \frac{4}{3} = \frac{4}{6} \times \frac{3}{4} = \frac{12}{24} = \frac{1}{2} \] **Answer:** \( \frac{1}{2} \) --- ### f) \( \frac{-6}{25} \div \frac{5}{12} \) \[ \frac{-6}{25} \div \frac{5}{12} = \frac{-6}{25} \times \frac{12}{5} = \frac{-72}{125} \] **Answer:** \( -\frac{72}{125} \) --- ### g) \( \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \) Find a common denominator (12): \[ \frac{1}{2} = \frac{6}{12}, \quad \frac{1}{3} = \frac{4}{12}, \quad \frac{1}{4} = \frac{3}{12} \] Add them: \[ \frac{6}{12} + \frac{4}{12} + \frac{3}{12} = \frac{13}{12} \] **Answer:** \( \frac{13}{12} \) --- ### h) \( 2 \frac{2}{3} + 1 \frac{1}{4} - 3 \frac{1}{5} \) Convert all mixed numbers to improper fractions: \[ 2 \frac{2}{3} = \frac{8}{3}, \quad 1 \frac{1}{4} = \frac{5}{4}, \quad 3 \frac{1}{5} = \frac{16}{5} \] Find a common denominator (60): \[ \frac{8}{3} = \frac{160}{60}, \quad \frac{5}{4} = \frac{75}{60}, \quad \frac{16}{5} = \frac{192}{60} \] Combine them: \[ \frac{160}{60} + \frac{75}{60} - \frac{192}{60} = \frac{43}{60} \] **Answer:** \( \frac{43}{60} \) --- ### i) \( \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div \frac{1}{2} \) Step-by-step calculation: \[ \frac{2}{3} \times \frac{3}{4} = \frac{6}{12} = \frac{1}{2} \] \[ \frac{1}{2} \div \frac{5}{4} = \frac{1}{2} \times \frac{4}{5} = \frac{4}{10} = \frac{2}{5} \] \[ \frac{4}{5} \div \frac{1}{2} = \frac{4}{5} \times \frac{2}{1} = \frac{8}{5} \] \[ \frac{2}{5} + \frac{8}{5} = \frac{10}{5} = 2 \] **Answer:** \( 2 \) or \( \frac{2}{1} \) --- ### j) \( \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div 2 \) Step-by-step calculation: \[ \frac{2}{3} \div \frac{3}{4} = \frac{2}{3} \times \frac{4}{3} = \frac{8}{9} \] \[ \frac{8}{9} \div \frac{5}{4} = \frac{8}{9} \times \frac{4}{5} = \frac{32}{45} \] \[ \frac{4}{5} \div 2 = \frac{4}{5} \times \frac{1}{2} = \frac{4}{10} = \frac{2}{5} \] \[ \frac{32}{45} + \frac{2}{5} = \frac{32}{45} + \frac{18}{45} = \frac{50}{45} = \frac{10}{9} \] **Answer:** \( \frac{10}{9} \) --- ### k) \( \frac{2}{3} \div \left( \frac{3}{4} \div \frac{5}{4} \right) - \frac{4}{3} \div \frac{6}{2} \) Step-by-step calculation: \[ \frac{3}{4} \div \frac{5}{4} = \frac{3}{4} \times \frac{4}{5} = \frac{12}{20} = \frac{3}{5} \] \[ \frac{2}{3} \div \frac{3}{5} = \frac{2}{3} \times \frac{5}{3} = \frac{10}{9} \] \[ \frac{6}{2} = 3, \quad \frac{4}{3} \div 3 = \frac{4}{3} \times \frac{1}{3} = \frac{4}{9} \] \[ \frac{10}{9} - \frac{4}{9} = \frac{6}{9} = \frac{2}{3} \] **Answer:** \( \frac{2}{3} \) --- ### 1) \( \frac{3}{2} \div \frac{3}{4} \times \left( \frac{5}{4} - \frac{4}{5} \right) \div \frac{1}{2} \) Step-by-step calculation: \[ \frac{3}{2} \div \frac{3}{4} = \frac{3}{2} \times \frac{4}{3} = 2 \] \[ \frac{5}{4} - \frac{4}{5} = \frac{25}{20} - \frac{16}{20} = \frac{9}{20} \] \[ 2 \times \frac{9}{20} = \frac{18}{20} = \frac{9}{10} \] \[ \frac{9}{10} \div \frac{1}{2} = \frac{9}{10} \times \frac{2}{1} = \frac{18}{10} = \frac{9}{5} \] **Answer:** \( \frac{9}{5} \) ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let's simplify each expression step by step: a) \[ \frac{2}{3} \times \frac{6}{5} = \frac{2 \times 6}{3 \times 5} = \frac{12}{15} = \frac{4}{5} \] b) \[ \frac{-15}{8} \times \frac{12}{10} = \frac{-15 \times 12}{8 \times 10} = \frac{-180}{80} = \frac{-9}{4} \quad (\text{after dividing by } 20) \] c) \[ -1 \frac{3}{4} \times \frac{8}{9} = -\frac{7}{4} \times \frac{8}{9} = \frac{-56}{36} = \frac{-14}{9} \quad (\text{after dividing by } 4) \] d) \[ 2 \frac{4}{5} \times \frac{-10}{12} = \frac{14}{5} \times \frac{-10}{12} = \frac{-140}{60} = \frac{-7}{3} \quad (\text{after dividing by } 20) \] e) \[ \frac{4}{6} \div \frac{4}{3} = \frac{4}{6} \times \frac{3}{4} = \frac{3}{6} = \frac{1}{2} \] f) \[ \frac{-6}{25} \div \frac{5}{12} = \frac{-6}{25} \times \frac{12}{5} = \frac{-72}{125} \] g) \[ \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6}{12} + \frac{4}{12} + \frac{3}{12} = \frac{13}{12} \] h) \[ 2 \frac{2}{3} + 1 \frac{1}{4} - 3 \frac{1}{5} = \frac{8}{3} + \frac{5}{4} - \frac{16}{5} = \frac{40}{15} + \frac{15}{15} - \frac{48}{15} = \frac{7}{15} \] i) \[ \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div \frac{1}{2} = \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} + \frac{4}{5} \times 2 = \frac{24}{60} + \frac{8}{5} = \frac{2}{5} + \frac{8}{5} = \frac{10}{5} = 2 \] j) \[ \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div 2 = \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} + \frac{4}{5} \times \frac{1}{2} = \frac{32}{45} + \frac{4}{10} = \frac{32}{45} + \frac{18}{45} = \frac{50}{45} = \frac{10}{9} \] k) \[ \frac{2}{3} \div \left( \frac{3}{4} \div \frac{5}{4} \right) - \frac{4}{3} \div \frac{6}{2} = \frac{2}{3} \div \left( \frac{3}{5} \right) - \frac{4}{3} \times \frac{1}{3} = \frac{10}{9} - \frac{4}{9} = \frac{6}{9} = \frac{2}{3} \] 1) \[ \frac{3}{2} \div \frac{3}{4} \times \left( \frac{5}{4} - \frac{4}{5} \right) \div \frac{1}{2} = \frac{3}{2} \times \frac{4}{3} \times \left(

Related Questions

Latest Arithmetic Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy