Write each number in the form \( \frac{a}{b} \) where \( a \) and \( b \in \mathbb{Z} \) and \( a \) and \( b \) have no common factors. \( \begin{array}{ll}\text { a) } \frac{2}{3} \times \frac{6}{5} & \text { b) } \frac{-15}{8} \times \frac{12}{10} \\ \text { c) }-1 \frac{3}{4} \times \frac{8}{9} & \text { d) } 2 \frac{4}{5} \times \frac{-10}{12} \\ \text { e) } \frac{4}{6} \div \frac{4}{3} & \text { f) } \frac{-6}{25} \div \frac{5}{12} \\ \text { g) } \frac{1}{2}+\frac{1}{3}+\frac{1}{4} & \text { h) } 2 \frac{2}{3}+1 \frac{1}{4}-3 \frac{1}{5} \\ \text { i) } \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4}+\frac{4}{5} \div \frac{1}{2} & \text { j) } \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4}+\frac{4}{5} \div 2 \\ \text { k) } \frac{2}{3} \div\left(\frac{3}{4} \div \frac{5}{4}\right)-\frac{4}{3} \div \frac{6}{2} & \text { 1) } \frac{3}{2} \div \frac{3}{4} \times\left(\frac{5}{4}-\frac{4}{5}\right) \div \frac{1}{2}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Let's simplify each expression step by step: a) \[ \frac{2}{3} \times \frac{6}{5} = \frac{2 \times 6}{3 \times 5} = \frac{12}{15} = \frac{4}{5} \] b) \[ \frac{-15}{8} \times \frac{12}{10} = \frac{-15 \times 12}{8 \times 10} = \frac{-180}{80} = \frac{-9}{4} \quad (\text{after dividing by } 20) \] c) \[ -1 \frac{3}{4} \times \frac{8}{9} = -\frac{7}{4} \times \frac{8}{9} = \frac{-56}{36} = \frac{-14}{9} \quad (\text{after dividing by } 4) \] d) \[ 2 \frac{4}{5} \times \frac{-10}{12} = \frac{14}{5} \times \frac{-10}{12} = \frac{-140}{60} = \frac{-7}{3} \quad (\text{after dividing by } 20) \] e) \[ \frac{4}{6} \div \frac{4}{3} = \frac{4}{6} \times \frac{3}{4} = \frac{3}{6} = \frac{1}{2} \] f) \[ \frac{-6}{25} \div \frac{5}{12} = \frac{-6}{25} \times \frac{12}{5} = \frac{-72}{125} \] g) \[ \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6}{12} + \frac{4}{12} + \frac{3}{12} = \frac{13}{12} \] h) \[ 2 \frac{2}{3} + 1 \frac{1}{4} - 3 \frac{1}{5} = \frac{8}{3} + \frac{5}{4} - \frac{16}{5} = \frac{40}{15} + \frac{15}{15} - \frac{48}{15} = \frac{7}{15} \] i) \[ \frac{2}{3} \times \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div \frac{1}{2} = \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} + \frac{4}{5} \times 2 = \frac{24}{60} + \frac{8}{5} = \frac{2}{5} + \frac{8}{5} = \frac{10}{5} = 2 \] j) \[ \frac{2}{3} \div \frac{3}{4} \div \frac{5}{4} + \frac{4}{5} \div 2 = \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} + \frac{4}{5} \times \frac{1}{2} = \frac{32}{45} + \frac{4}{10} = \frac{32}{45} + \frac{18}{45} = \frac{50}{45} = \frac{10}{9} \] k) \[ \frac{2}{3} \div \left( \frac{3}{4} \div \frac{5}{4} \right) - \frac{4}{3} \div \frac{6}{2} = \frac{2}{3} \div \left( \frac{3}{5} \right) - \frac{4}{3} \times \frac{1}{3} = \frac{10}{9} - \frac{4}{9} = \frac{6}{9} = \frac{2}{3} \] 1) \[ \frac{3}{2} \div \frac{3}{4} \times \left( \frac{5}{4} - \frac{4}{5} \right) \div \frac{1}{2} = \frac{3}{2} \times \frac{4}{3} \times \left(