Answer
**Solutions:**
1. **Domain of \( f(x) = \frac{1}{\sqrt{x - |x|}} \):**
**Answer:** Not defined for any real number.
2. **Fourth term of the geometric sequence:**
**Answer:** \( \frac{1}{2} \)
3. **Number of words with all vowels together in "SOCIETY":**
**Answer:** 720
4. **Probability of rolling a prime on one die and a composite on the other:**
**Answer:** \( \frac{1}{3} \)
5. **Number of three-digit library cards with non-zero first digit and no repeated digits:**
**Answer:** 100
Solution
Let's solve each problem step by step:
---
### **Problem 1**
**Find the domain of the function** \( f(x) = \frac{1}{\sqrt{x - |x|}} \).
**Options:**
- (A) \( \mathbb{R} \)
- (B) \( (0, \infty) \)
- (C) \( (-\infty, 0) \)
- (D) \( f \) is not defined for any \( x \in \mathbb{R} \)
**Solution:**
1. **Condition for the square root to be defined and non-zero:**
\[
x - |x| > 0
\]
2. **Consider two cases for \( x \):**
- **Case 1:** \( x \geq 0 \)
\[
|x| = x \Rightarrow x - x = 0 \not> 0
\]
- **Case 2:** \( x < 0 \)
\[
|x| = -x \Rightarrow x - (-x) = 2x > 0 \Rightarrow x > 0
\]
But \( x < 0 \) contradicts \( x > 0 \). No solution in this case.
3. **Conclusion:**
There is **no real number** \( x \) that satisfies the condition. Therefore, the function is **not defined** for any real \( x \).
**Answer:** **(D) \( f \) is not defined for any \( x \in \mathbb{R} \)**
---
### **Problem 2**
**Find the fourth term of a geometric sequence whose third term is 1 and whose eighth term is** \( \frac{1}{32} \).
**Options:**
- (A) 4
- (B) \( \frac{1}{2} \)
- (C) \( \frac{1}{8} \)
- (D) \( \frac{1}{16} \)
**Solution:**
1. **Let the first term be** \( a \) **and the common ratio be** \( r \).
2. **Given:**
\[
\text{3rd term} = ar^2 = 1
\]
\[
\text{8th term} = ar^7 = \frac{1}{32}
\]
3. **Divide the two equations to solve for \( r \):**
\[
\frac{ar^7}{ar^2} = r^5 = \frac{1}{32} \Rightarrow r^5 = \frac{1}{32} = \left(\frac{1}{2}\right)^5 \Rightarrow r = \frac{1}{2}
\]
4. **Find \( a \) using the 3rd term:**
\[
ar^2 = 1 \Rightarrow a \left(\frac{1}{2}\right)^2 = 1 \Rightarrow a \cdot \frac{1}{4} = 1 \Rightarrow a = 4
\]
5. **Find the 4th term:**
\[
ar^3 = 4 \left(\frac{1}{2}\right)^3 = 4 \times \frac{1}{8} = \frac{1}{2}
\]
**Answer:** **(B) \( \frac{1}{2} \)**
---
### **Problem 3**
**In a random arrangement of the word "SOCIETY", what is the total number of words in which all the three vowels come together?**
**Options:**
- (A) 120
- (B) 720
- (C) 420
- (D) 840
**Solution:**
1. **Identify vowels and consonants in "SOCIETY":**
- **Vowels:** O, I, E (3 vowels)
- **Consonants:** S, C, T, Y (4 consonants)
2. **Treat all vowels as a single unit to ensure they come together.**
- Total units to arrange: 4 consonants + 1 vowel group = 5 units.
3. **Number of ways to arrange these 5 units:**
\[
5! = 120
\]
4. **Number of ways to arrange the 3 vowels within their group:**
\[
3! = 6
\]
5. **Total number of desired arrangements:**
\[
5! \times 3! = 120 \times 6 = 720
\]
**Answer:** **(B) 720**
---
### **Problem 4**
**Rolling two dice simultaneously, what is the probability that a prime number turns up on one die and a composite number on the other?**
**Options:**
- (A) \( \frac{1}{3} \)
- (B) \( \frac{2}{3} \)
- (C) \( \frac{1}{6} \)
- (D) \( \frac{5}{6} \)
**Solution:**
1. **Possible outcomes when rolling two dice:** \( 6 \times 6 = 36 \)
2. **Identify prime and composite numbers on a die:**
- **Prime numbers:** 2, 3, 5 (3 numbers)
- **Composite numbers:** 4, 6 (2 numbers)
- **Neither:** 1 (excluded)
3. **Favorable outcomes:**
- **First die is prime and second die is composite:**
\[
3 \text{ (primes)} \times 2 \text{ (composites)} = 6
\]
- **First die is composite and second die is prime:**
\[
2 \text{ (composites)} \times 3 \text{ (primes)} = 6
\]
- **Total favorable outcomes:** \( 6 + 6 = 12 \)
4. **Probability:**
\[
\frac{12}{36} = \frac{1}{3}
\]
**Answer:** **(A) \( \frac{1}{3} \)**
---
### **Problem 5**
**A three-digit library identification card is to be printed from the numbers 0,1,2,3,4,5 in such a way that the first digit is non-zero and no number is repeated. How many such cards can be printed?**
**Options:**
- (A) 100
- (B) 120
- (C) 180
- (D) 150
**Solution:**
1. **Digits available:** 0, 1, 2, 3, 4, 5 (6 digits)
2. **Conditions:**
- **First digit (Hundreds place):** Cannot be 0 → 5 choices (1,2,3,4,5)
- **Second digit (Tens place):** Any of the remaining 5 digits (including 0)
- **Third digit (Units place):** Any of the remaining 4 digits
3. **Total number of possible cards:**
\[
5 \times 5 \times 4 = 100
\]
**Answer:** **(A) 100**
---
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution