Question
upstudy study bank question image url

Given \( f(x)=-\tan ^{2}(x) \), write the equation of the line tangent to \( y=f(x) \) when \( x=\frac{4 \pi}{3} \)

Ask by Salazar Lane. in the United States
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The equation of the tangent line to \( y = -\tan^2(x) \) at \( x = \frac{4\pi}{3} \) is: \[ y + 3 = -8\sqrt{3}\left(x - \frac{4\pi}{3}\right) \]

Solution

To find the equation of the tangent line to \( y = f(x) \) at \( x = \frac{4\pi}{3} \), where \( f(x) = -\tan^2(x) \), follow these steps: ### 1. Evaluate \( f(x) \) at \( x = \frac{4\pi}{3} \): \[ f\left(\frac{4\pi}{3}\right) = -\tan^2\left(\frac{4\pi}{3}\right) \] First, find \( \tan\left(\frac{4\pi}{3}\right) \): \[ \tan\left(\frac{4\pi}{3}\right) = \tan\left(\pi + \frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, \[ f\left(\frac{4\pi}{3}\right) = -\left(\sqrt{3}\right)^2 = -3 \] So, the point of tangency is \( \left(\frac{4\pi}{3}, -3\right) \). ### 2. Find the derivative \( f'(x) \): \[ f(x) = -\tan^2(x) \\ f'(x) = -2\tan(x) \cdot \sec^2(x) \] ### 3. Evaluate \( f'(x) \) at \( x = \frac{4\pi}{3} \): First, find \( \sec\left(\frac{4\pi}{3}\right) \): \[ \cos\left(\frac{4\pi}{3}\right) = \cos\left(\pi + \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2} \\ \sec\left(\frac{4\pi}{3}\right) = \frac{1}{\cos\left(\frac{4\pi}{3}\right)} = -2 \\ \sec^2\left(\frac{4\pi}{3}\right) = 4 \] Now, \[ f'\left(\frac{4\pi}{3}\right) = -2 \cdot \sqrt{3} \cdot 4 = -8\sqrt{3} \] ### 4. Write the equation of the tangent line: Using the point-slope form of a line: \[ y - y_1 = m(x - x_1) \] Where \( m = -8\sqrt{3} \) and \( (x_1, y_1) = \left(\frac{4\pi}{3}, -3\right) \): \[ y - (-3) = -8\sqrt{3} \left(x - \frac{4\pi}{3}\right) \\ y + 3 = -8\sqrt{3} \left(x - \frac{4\pi}{3}\right) \] ### Final Answer: After simplifying, an equation for the tangent line is y + 3 = –8 √3 (x – 4π⁄3).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the equation of the tangent line to \( y = f(x) = -\tan^2(x) \) at \( x = \frac{4\pi}{3} \), we first need to calculate \( f\left(\frac{4\pi}{3}\right) \) and then find the derivative \( f'(x) \). 1. Calculate \( f\left(\frac{4\pi}{3}\right) \): \[ f\left(\frac{4\pi}{3}\right) = -\tan^2\left(\frac{4\pi}{3}\right) = -\left(\tan\left(\frac{4\pi}{3}\right)\right)^2 \] Since \( \tan\left(\frac{4\pi}{3}\right) = \tan\left(\pi + \frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \), \[ f\left(\frac{4\pi}{3}\right) = -(\sqrt{3})^2 = -3. \] 2. Find \( f'(x) \): Using the chain rule, \[ f'(x) = -2\tan(x) \sec^2(x). \] Now, we need to evaluate \( f'\left(\frac{4\pi}{3}\right) \): \[ f'\left(\frac{4\pi}{3}\right) = -2\tan\left(\frac{4\pi}{3}\right) \sec^2\left(\frac{4\pi}{3}\right) = -2(-\sqrt{3})\sec^2\left(\frac{4\pi}{3}\right). \] Knowing \( \sec^2 = 1 + \tan^2 \), \[ \sec^2\left(\frac{4\pi}{3}\right) = 1 + (\sqrt{3})^2 = 4. \] Therefore, \[ f'\left(\frac{4\pi}{3}\right) = -2(-\sqrt{3})(4) = 8\sqrt{3}. \] 3. Now we have the point \(\left(\frac{4\pi}{3}, -3\right)\) and the slope \(8\sqrt{3}\). The equation of the tangent line in point-slope form is: \[ y - (-3) = 8\sqrt{3}\left(x - \frac{4\pi}{3}\right). \] Simplifying gives: \[ y + 3 = 8\sqrt{3}x - \frac{32\pi\sqrt{3}}{3}. \] Rearranging gives the tangent line's equation: \[ y = 8\sqrt{3}x - \frac{32\pi\sqrt{3}}{3} - 3. \] Thus, the equation of the tangent line is: \[ y = 8\sqrt{3}x - \frac{32\pi\sqrt{3}}{3} - 3. \]

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy