Question
Fill in the table using this function rule. \[ f(x)=\sqrt{x}+5 \]
Ask by O'Quinn Franklin. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Here is the table filled using the function \( f(x) = \sqrt{x} + 5 \):
| \( x \) | \( f(x) \) |
|--------|------------|
| 0 | 5 |
| 1 | 6 |
| 4 | 7 |
| 9 | 8 |
| 16 | 9 |
| 25 | 10 |
| 36 | 11 |
| 49 | 12 |
| 64 | 13 |
| 81 | 14 |
Solution
Sure! Let's fill in a table using the function rule:
\[ f(x) = \sqrt{x} + 5 \]
We'll choose a set of \( x \) values, compute \( \sqrt{x} \), and then add 5 to find \( f(x) \).
| \( x \) | \( f(x) = \sqrt{x} + 5 \) |
|--------|---------------------------|
| 0 | \( \sqrt{0} + 5 = 0 + 5 = 5 \) |
| 1 | \( \sqrt{1} + 5 = 1 + 5 = 6 \) |
| 4 | \( \sqrt{4} + 5 = 2 + 5 = 7 \) |
| 9 | \( \sqrt{9} + 5 = 3 + 5 = 8 \) |
| 16 | \( \sqrt{16} + 5 = 4 + 5 = 9 \) |
| 25 | \( \sqrt{25} + 5 = 5 + 5 = 10 \) |
| 36 | \( \sqrt{36} + 5 = 6 + 5 = 11 \) |
| 49 | \( \sqrt{49} + 5 = 7 + 5 = 12 \) |
| 64 | \( \sqrt{64} + 5 = 8 + 5 = 13 \) |
| 81 | \( \sqrt{81} + 5 = 9 + 5 = 14 \) |
### Explanation:
1. **Choose \( x \) Values:** Select non-negative values for \( x \) since the square root of a negative number is not a real number.
2. **Compute \( \sqrt{x} \):** Find the square root of each \( x \) value.
3. **Add 5:** Add 5 to the square root to get \( f(x) \).
### Graphical Representation:
If you plot these points on a graph, you'll see that the function \( f(x) = \sqrt{x} + 5 \) is a square root function shifted upwards by 5 units.
### Example Calculation:
For \( x = 16 \):
\[ f(16) = \sqrt{16} + 5 = 4 + 5 = 9 \]
Feel free to use different \( x \) values to populate more entries in the table as needed!
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
To fill in the table using the function rule \( f(x) = \sqrt{x} + 5 \), we can choose several values for \( x \) and calculate \( f(x) \). For example: - If \( x = 0 \), then \( f(0) = \sqrt{0} + 5 = 0 + 5 = 5 \). - If \( x = 1 \), then \( f(1) = \sqrt{1} + 5 = 1 + 5 = 6 \). - If \( x = 4 \), then \( f(4) = \sqrt{4} + 5 = 2 + 5 = 7 \). - If \( x = 9 \), then \( f(9) = \sqrt{9} + 5 = 3 + 5 = 8 \). So, the filled-in values would look something like this: | x | f(x) | |-------|--------| | 0 | 5 | | 1 | 6 | | 4 | 7 | | 9 | 8 |