Question
upstudy study bank question image url

\( \leftarrow \int \) Evaluate the integral using any appropriate algebraic method or trigonometric identity. \( \int \frac{3 d x}{x \sqrt{4-9 \ln ^{2} x}} \)

Ask by Dickson Ramirez. in the United States
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral \( \int \frac{3}{x \sqrt{4-9 \ln^{2}(x)}} dx \) equals \( \arcsin\left(\frac{3}{2}\ln(x)\right) + C \), where \( C \) is a constant.

Solution

Calculate the integral \( \int \frac{3}{x \sqrt{4-9 \ln^{2}(x)}} dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{3}{x\sqrt{4-9\left(\ln{\left(x\right)}\right)^{2}}} dx\) - step1: Rewrite the expression: \(\int 3\times \frac{1}{x\sqrt{4-9\left(\ln{\left(x\right)}\right)^{2}}} dx\) - step2: Use properties of integrals: \(3\times \int \frac{1}{x\sqrt{4-9\left(\ln{\left(x\right)}\right)^{2}}} dx\) - step3: Rewrite the expression: \(3\times \int \frac{1}{x\left(4-9\left(\ln{\left(x\right)}\right)^{2}\right)^{\frac{1}{2}}} dx\) - step4: Use the substitution \(dx=x dt\) to transform the integral\(:\) \(3\times \int \frac{1}{x\left(4-9\left(\ln{\left(x\right)}\right)^{2}\right)^{\frac{1}{2}}}\times x dt\) - step5: Simplify: \(3\times \int \frac{1}{\left(4-9\left(\ln{\left(x\right)}\right)^{2}\right)^{\frac{1}{2}}} dt\) - step6: Use the substitution \(t=\ln{\left(x\right)}\) to transform the integral\(:\) \(3\times \int \frac{1}{\left(4-9t^{2}\right)^{\frac{1}{2}}} dt\) - step7: Transform the expression: \(3\times \int \frac{1}{\left(4-4\sin^{2}\left(v\right)\right)^{\frac{1}{2}}}\times \frac{2}{3}\cos\left(v\right) dv\) - step8: Simplify the expression: \(3\times \int \frac{\cos\left(v\right)}{3\left(1-\sin^{2}\left(v\right)\right)^{\frac{1}{2}}} dv\) - step9: Simplify the expression: \(3\times \int \frac{\cos\left(v\right)\sec\left(v\right)}{3} dv\) - step10: Simplify the expression: \(3\times \int \frac{1}{3} dv\) - step11: Evaluate the integral: \(3\times \frac{1}{3}v\) - step12: Multiply the numbers: \(v\) - step13: Substitute back: \(\arcsin\left(\frac{3}{2}t\right)\) - step14: Substitute back: \(\arcsin\left(\frac{3}{2}\ln{\left(x\right)}\right)\) - step15: Add the constant of integral C: \(\arcsin\left(\frac{3}{2}\ln{\left(x\right)}\right) + C, C \in \mathbb{R}\) The integral \( \int \frac{3}{x \sqrt{4-9 \ln^{2}(x)}} dx \) evaluates to \( \arcsin\left(\frac{3}{2}\ln(x)\right) + C \), where \( C \) is an arbitrary constant.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the integral \( \int \frac{3 \, dx}{x \sqrt{4 - 9 \ln^2 x}} \), we can use a substitution. Let \( u = \ln x \), which gives \( du = \frac{1}{x} \, dx \) or \( dx = x \, du = e^u \, du \). Thus, the integral becomes: \[ \int \frac{3 \, e^u \, du}{e^u \sqrt{4 - 9u^2}} = 3 \int \frac{du}{\sqrt{4 - 9u^2}}. \] This integral resembles the integral of the form \( \int \frac{du}{\sqrt{a^2 - u^2}} \), which is solved using trigonometric substitution. Here, we have \( a^2 = 4 \) and \( 9u^2 = 4 - 9u^2 \) indicates a use of sine. We can set \( u = \frac{2}{3} \sin \theta \), which leads us to: \[ du = \frac{2}{3} \cos \theta \, d\theta. \] Transform the limits as necessary, and now integrate: \[ 3 \int \frac{\frac{2}{3} \cos \theta \, d\theta}{\sqrt{4 - 4 \sin^2 \theta}} = 3 \int \frac{\frac{2}{3} \cos \theta \, d\theta}{\sqrt{4(1 - \sin^2 \theta)}} = 3 \int \frac{\frac{2}{3} \cos \theta \, d\theta}{2 \cos \theta} = 3 \int \frac{1}{3} d\theta = \theta + C. \] Reverting back to \( u \) and then to \( x \), we find: \[ \theta = \arcsin\left(\frac{3}{2} u\right). \] Finally, substituting back, we have: \[ \int \frac{3 \, dx}{x \sqrt{4 - 9 \ln^2 x}} = \arcsin\left(\frac{3}{2} \ln x\right) + C. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy