Question
Evaluate the algebraic expression for the given value. \( x^{2}-5 x+7 \), for \( x=6 \) \( \begin{array}{l}\text { When } x=6, x^{2}-5 x+7=\square \\ \text { (Simplify your answer.) }\end{array} \)
Ask by Clark Hampton. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
When \( x = 6 \), \( x^{2} - 5x + 7 = 13 \).
Solution
Let's evaluate the expression \( x^{2} - 5x + 7 \) for \( x = 6 \).
\[
\begin{aligned}
x^{2} - 5x + 7 &= (6)^{2} - 5(6) + 7 \\
&= 36 - 30 + 7 \\
&= 13
\end{aligned}
\]
**When \( x = 6 \), \( x^{2} - 5x + 7 = 13 \).**
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
First, we substitute \( x = 6 \) into the expression: \[ x^{2}-5x+7 = 6^{2} - 5(6) + 7 \] Calculating this step-by-step: 1. \( 6^{2} = 36 \) 2. \( 5(6) = 30 \) Now, plug these values back into the expression: \[ 36 - 30 + 7 = 6 + 7 = 13 \] So, when \( x = 6 \), the value of \( x^{2}-5x+7 \) is \( 13 \). When \( x=6, x^{2}-5x+7=\square \) (Simplifying gives us the final answer) = 13