Question
upstudy study bank question image url

\( \begin{array}{lll}\text { 11. } 2 \sqrt[3]{16 x^{2} y^{7}} & \text { 17. } 2 x y \sqrt[3]{128 x^{2} y^{8}} & \text { 23. } \sqrt{8 x^{2} y^{4}+16 x y^{4}} \\ \text { 12. } \frac{2}{3} \sqrt[3]{27 m^{2} n^{8}} & \text { 18. } \frac{1}{3 a} \sqrt{27 a^{3} m^{7}} & \text { 24. } \sqrt{2 x^{2}-4 x y+2 y^{2}} \\ \text { 13. } 5 a \sqrt[3]{160 x^{7} y^{9} z^{13}} & \text { 19. } \frac{3}{5 x} \sqrt[3]{375 a^{8} b} & \text { 25. } \sqrt{(a-b)\left(a^{2}-b^{2}\right)} \\ \begin{array}{lll}\text { 14. } \sqrt[4]{80 a^{4} b^{5} c^{12}} & \text { 20. } \frac{1}{3} \sqrt[4]{81 a^{4} b} & \text { 26. } \sqrt{2 a m^{2}+4 a m n+2 a n^{2}} \\ \text { 15. } 3 \sqrt[4]{5 x^{8} y^{14} z^{16}} & \text { 21. } \sqrt{9 a+18 b} & \text { 27. } \sqrt{9 a^{3}-36 a^{2}+36 a} \\ \text { 16. } \frac{25}{5} \sqrt[32 x^{2} y^{11}]{ } & \text { 22. } \sqrt{3 a^{3} b^{2}-3 a^{2} b^{2}} & \end{array}\end{array} \)

Ask by Murray Ramirez. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

11. \( 4xy^2 \sqrt[3]{2} \) 12. \( 2m^{\frac{2}{3}} n^{\frac{8}{3}} \) 13. \( 10a y^3 x^{\frac{7}{3}} z^{\frac{13}{3}} \sqrt[3]{40} \) 14. \( 2a b^{\frac{5}{4}} c^3 \sqrt[4]{5} \) 15. \( 3 \sqrt[4]{5} x^2 y^{3.5} z^4 \) 16. \( 5 x^{\frac{2}{3}} y^{\frac{11}{3}} \) 17. \( 2^{\frac{10}{3}} x^{\frac{5}{3}} y^{\frac{11}{3}} \) 18. \( a^{\frac{1}{2}} m^{\frac{7}{2}} \) 19. \( \frac{3}{5 x} \sqrt[3]{375 a^{8} b} \) 20. \( \frac{1}{3} \sqrt[4]{81 a^{4} b} \) 21. \( \sqrt{9 a + 18 b} \) 22. \( \sqrt{3 a^{3} b^{2} - 3 a^{2} b^{2}} \) 23. \( \sqrt{8 x^{2} y^{4} + 16 x y^{4}} \) 24. \( \sqrt{2 x^{2} - 4 x y + 2 y^{2}} \) 25. \( \sqrt{(a - b)(a^{2} - b^{2})} \) 26. \( \sqrt{2 a m^{2} + 4 a m n + 2 a n^{2}} \) 27. \( \sqrt{9 a^{3} - 36 a^{2} + 36 a} \)

Solution

Vamos a simplificar cada una de las expresiones dadas paso a paso. ### 11. \( 2 \sqrt[3]{16 x^{2} y^{7}} \) 1. **Descomponer \(16\)**: \(16 = 2^4\). 2. **Reescribir la expresión**: \[ 2 \sqrt[3]{2^4 x^2 y^7} = 2 \sqrt[3]{2^3 \cdot 2 x^2 y^6 \cdot y} = 2 \cdot 2 \sqrt[3]{2} \cdot xy^2 \] 3. **Resultado**: \[ 4xy^2 \sqrt[3]{2} \] ### 12. \( \frac{2}{3} \sqrt[3]{27 m^{2} n^{8}} \) 1. **Descomponer \(27\)**: \(27 = 3^3\). 2. **Reescribir la expresión**: \[ \frac{2}{3} \sqrt[3]{3^3 m^2 n^8} = \frac{2}{3} \cdot 3 \cdot \sqrt[3]{m^2} \cdot \sqrt[3]{n^8} = \frac{2}{3} \cdot 3 \cdot m^{\frac{2}{3}} \cdot n^{\frac{8}{3}} \] 3. **Resultado**: \[ 2m^{\frac{2}{3}} n^{\frac{8}{3}} \] ### 13. \( 5 a \sqrt[3]{160 x^{7} y^{9} z^{13}} \) 1. **Descomponer \(160\)**: \(160 = 2^5 \cdot 5\). 2. **Reescribir la expresión**: \[ 5a \sqrt[3]{2^5 \cdot 5 \cdot x^7 \cdot y^9 \cdot z^{13}} = 5a \cdot \sqrt[3]{2^3 \cdot 2^2 \cdot 5} \cdot x^{\frac{7}{3}} \cdot y^{3} \cdot z^{\frac{13}{3}} \] 3. **Resultado**: \[ 5a \cdot 2 \cdot \sqrt[3]{10 \cdot 4} \cdot x^{\frac{7}{3}} \cdot y^{3} \cdot z^{\frac{13}{3}} = 10a y^3 x^{\frac{7}{3}} z^{\frac{13}{3}} \sqrt[3]{40} \] ### 14. \( \sqrt[4]{80 a^{4} b^{5} c^{12}} \) 1. **Descomponer \(80\)**: \(80 = 16 \cdot 5 = 2^4 \cdot 5\). 2. **Reescribir la expresión**: \[ \sqrt[4]{2^4 \cdot 5 \cdot a^4 \cdot b^5 \cdot c^{12}} = \sqrt[4]{2^4} \cdot \sqrt[4]{5} \cdot \sqrt[4]{a^4} \cdot \sqrt[4]{b^4} \cdot \sqrt[4]{b} \cdot \sqrt[4]{c^{12}} \] 3. **Resultado**: \[ 2a b^{\frac{5}{4}} c^3 \sqrt[4]{5} \] ### 15. \( 3 \sqrt[4]{5 x^{8} y^{14} z^{16}} \) 1. **Reescribir la expresión**: \[ 3 \sqrt[4]{5} \cdot \sqrt[4]{x^8} \cdot \sqrt[4]{y^{14}} \cdot \sqrt[4]{z^{16}} = 3 \sqrt[4]{5} \cdot x^2 \cdot y^{\frac{14}{4}} \cdot z^4 \] 2. **Resultado**: \[ 3 \sqrt[4]{5} x^2 y^{3.5} z^4 \] ### 16. \( \frac{25}{5} \sqrt[32 x^{2} y^{11}]{ } \) 1. **Simplificar**: \[ 5 \sqrt[3]{x^2 y^{11}} = 5 \cdot x^{\frac{2}{3}} \cdot y^{\frac{11}{3}} \] 2. **Resultado**: \[ 5 x^{\frac{2}{3}} y^{\frac{11}{3}} \] ### 17. \( 2 x y \sqrt[3]{128 x^{2} y^{8}} \) 1. **Descomponer \(128\)**: \(128 = 2^7\). 2. **Reescribir la expresión**: \[ 2xy \sqrt[3]{2^7 x^2 y^8} = 2xy \cdot 2^{\frac{7}{3}} \cdot x^{\frac{2}{3}} \cdot y^{\frac{8}{3}} = 2^{\frac{10}{3}} x^{1+\frac{2}{3}} y^{1+\frac{8}{3}} \] 3. **Resultado**: \[ 2^{\frac{10}{3}} x^{\frac{5}{3}} y^{\frac{11}{3}} \] ### 18. \( \frac{1}{3 a} \sqrt{27 a^{3} m^{7}} \) 1. **Descomponer \(27\)**: \(27 = 3^3\). 2. **Reescribir la expresión**: \[ \frac{1}{3a} \cdot 3 \cdot a^{\frac{3}{2}} \cdot m^{\frac{7}{2}} = \frac{1}{a} a^{\frac{3}{2}} m^{\frac{7}{2}} = a^{\frac{1}{2}} m^{\frac{7}{2}} \] 3. **Resultado**: \[ a^{\frac{1}{2}} m^{\frac{7}{2}} \] ### 19. \( \frac

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Did you know that the study of roots and radicals dates back to ancient civilizations? The Babylonians were already using methods involving square roots and cube roots around 2000 BC, and they had accurate approximations for these calculations! Fast forward to today, understanding radical expressions is crucial not only in mathematics but also in physics, engineering, and computer science where precise calculations can lead to innovative solutions. When simplifying radical expressions, common pitfalls include forgetting to simplify completely or mismanaging negative signs. Always check your final expression to see if there are any further factoring opportunities, and remember that terms under a radical can often be rewritten to make simplification easier. Keep practicing, and soon, you'll conquer radical expressions like a pro!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy