In \( \triangle U V W, \overline{U V} \cong \overline{W U} \) and \( \mathrm{m} \angle W=51^{\circ} \). Find \( \mathrm{m} \angle U \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
In triangle \( U V W \), since \( \overline{U V} \cong \overline{W U} \), this indicates that triangle \( U V W \) is isosceles, with \( \angle U \) and \( \angle V \) being the base angles. The angles in a triangle sum up to \( 180^\circ \). Given that \( m\angle W = 51^\circ \), we can use this information to find the measures of \( \angle U \) and \( \angle V \): \[ m\angle U + m\angle V + m\angle W = 180^\circ \] \[ m\angle U + m\angle U + 51^\circ = 180^\circ \] \[ 2m\angle U + 51^\circ = 180^\circ \] \[ 2m\angle U = 180^\circ - 51^\circ \] \[ 2m\angle U = 129^\circ \] \[ m\angle U = \frac{129^\circ}{2} \] \[ m\angle U = 64.5^\circ \] Thus, \( m\angle U = 64.5^\circ \).