Question
upstudy study bank question image url

Find the exact value of each of the following under the given conditions below. \[ \tan \alpha=-\frac{12}{5}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{1}{2}, 0<\beta<\frac{\pi}{2} \] (a) \( \sin (\alpha+\beta) \) (b) \( \cos (\alpha+\beta) \) (c) \( \sin (\alpha-\beta) \) (d) \( \boldsymbol{\operatorname { t a n }}(\alpha-\beta) \) (a) \( \sin (\alpha+\beta)=\frac{12-5 \sqrt{3}}{26} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) (b) \( \cos (\alpha+\beta)= \) \( \square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Ask by Wheeler Collins. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \cos (\alpha + \beta) = -\frac{5 + 12\sqrt{3}}{26} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To solve for \( \sin (\alpha + \beta) \) and \( \cos (\alpha + \beta) \), we need to find the values of \( \sin \alpha \) and \( \cos \alpha \), and then we can use the angle addition formulas. Given: \[ \tan \alpha = -\frac{12}{5}, \quad \frac{\pi}{2} < \alpha < \pi \] This tells us that \( \alpha \) is in the second quadrant, where sine is positive and cosine is negative. We can represent \( \tan \alpha \) as: \[ \frac{\sin \alpha}{\cos \alpha} = -\frac{12}{5} \] Let: \[ \sin \alpha = 12k, \quad \cos \alpha = -5k \] Using the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \implies (12k)^2 + (-5k)^2 = 1 \implies 144k^2 + 25k^2 = 1 \implies 169k^2 = 1 \implies k^2 = \frac{1}{169} \implies k = \frac{1}{13} \] Substituting back, we get: \[ \sin \alpha = 12 \left(\frac{1}{13}\right) = \frac{12}{13}, \quad \cos \alpha = -5 \left(\frac{1}{13}\right) = -\frac{5}{13} \] Next, we have: \[ \cos \beta = \frac{1}{2}, \quad 0 < \beta < \frac{\pi}{2 \Rightarrow \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] Now, we can compute \( \sin (\alpha + \beta) \) and \( \cos (\alpha + \beta) \): (a) For \( \sin (\alpha + \beta) \): \[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Substituting in the values: \[ \sin (\alpha + \beta) = \left(\frac{12}{13}\right) \left(\frac{1}{2}\right) + \left(-\frac{5}{13}\right) \left(\frac{\sqrt{3}}{2}\right) = \frac{12}{26} - \frac{5\sqrt{3}}{26} = \frac{12 - 5\sqrt{3}}{26} \] Thus, the exact value is: \[ \sin (\alpha + \beta) = \frac{12 - 5\sqrt{3}}{26} \] (b) For \( \cos (\alpha + \beta) \): \[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting our values: \[ \cos (\alpha + \beta) = \left(-\frac{5}{13}\right) \left(\frac{1}{2}\right) - \left(\frac{12}{13}\right) \left(\frac{\sqrt{3}}{2}\right) = -\frac{5}{26} - \frac{12\sqrt{3}}{26} = -\frac{5 + 12\sqrt{3}}{26} \] Thus, the exact value is: \[ \cos (\alpha + \beta) = -\frac{5 + 12\sqrt{3}}{26} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy