Question
Multiple Choice Identify the choice that best completes the statement or answers the question. 1. \( \frac{-5}{x-1}=\frac{3}{x-3} \) a. \( \frac{18}{5} \) b. \( \frac{3}{8} \) c. \( \frac{9}{4} \) d. 0 2. \( \frac{-5}{x-3}=\frac{-3}{x+3} \) a. -12 b. -3 c. \( -\frac{9}{2} \) d. \( -\frac{24}{5} \) 3. \( \frac{a}{a^{2}-36}+\frac{2}{a-6}=\frac{1}{a+6} \) a. -9 b. -9 and -6 c. 6 d. -6 4. \( \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \) a. \( \quad-4 \) b. 3 or -4 c. \( \frac{-1 \pm \sqrt{73}}{2} \) d. 2 5. \( \frac{5}{6 d}+\frac{5}{d}=2 \) a. \( \frac{35}{12} \) b. \( \frac{5}{7} \) c. \( \frac{7}{2} \) d. \( \frac{35}{6} \) 6. \( \frac{8}{5 d}+\frac{3}{5 d}=6 \) a. \( \frac{11}{48} \) b. \( \frac{11}{30} \) c. \( \frac{11}{5} \) d. \( \frac{11}{60} \) 7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). Write an equation that can be used to find the two integers. Find the two integers. a. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 8 \) and 10 c. \( \quad k+(k+2)=\frac{11}{60} ; 8 \) and 10 b. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 10 \) and 12 d. \( \quad k+(k+2)=\frac{11}{60} ; 10 \) and 12
Ask by Ingram Kelley. in the United States
Jan 22,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
1. **a. \( \frac{9}{4} \)**
2. **a. -12**
3. **a. -9**
4. **a. -4**
5. **a. \( \frac{35}{12} \)**
6. **b. \( \frac{11}{30} \)**
7. **b. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 10 \text{ and } 12 \)**
Solution
Let's solve each of the multiple-choice questions step by step.
---
### **1. Solve \( \frac{-5}{x-1} = \frac{3}{x-3} \)**
**Solution:**
\[
\begin{align*}
\frac{-5}{x-1} &= \frac{3}{x-3} \\
-5(x - 3) &= 3(x - 1) \quad \text{(Cross-multiplying)} \\
-5x + 15 &= 3x - 3 \\
-5x - 3x &= -3 - 15 \\
-8x &= -18 \\
x &= \frac{-18}{-8} = \frac{9}{4}
\end{align*}
\]
**Answer:**
**c. \( \frac{9}{4} \)**
---
### **2. Solve \( \frac{-5}{x-3} = \frac{-3}{x+3} \)**
**Solution:**
\[
\begin{align*}
\frac{-5}{x-3} &= \frac{-3}{x+3} \\
-5(x + 3) &= -3(x - 3) \quad \text{(Cross-multiplying)} \\
-5x - 15 &= -3x + 9 \\
-5x + 3x &= 9 + 15 \\
-2x &= 24 \\
x &= -12
\end{align*}
\]
**Answer:**
**a. -12**
---
### **3. Solve \( \frac{a}{a^{2}-36} + \frac{2}{a-6} = \frac{1}{a+6} \)**
**Solution:**
\[
\begin{align*}
a^{2} - 36 &= (a - 6)(a + 6) \\
\frac{a}{(a - 6)(a + 6)} + \frac{2}{a - 6} &= \frac{1}{a + 6} \\
\text{Multiply all terms by } (a - 6)(a + 6): \\
a + 2(a + 6) &= a - 6 \\
a + 2a + 12 &= a - 6 \\
3a + 12 &= a - 6 \\
2a &= -18 \\
a &= -9
\end{align*}
\]
*Note: \(a = -6\) would make the denominator zero, which is invalid.*
**Answer:**
**a. -9**
---
### **4. Solve \( \frac{6}{x^{2}-9} - \frac{1}{x-3} = 1 \)**
**Solution:**
\[
\begin{align*}
x^{2} - 9 &= (x - 3)(x + 3) \\
\frac{6}{(x - 3)(x + 3)} - \frac{1}{x - 3} &= 1 \\
\text{Multiply all terms by } (x - 3)(x + 3): \\
6 - (x + 3) &= (x - 3)(x + 3) \\
6 - x - 3 &= x^{2} - 9 \\
3 - x &= x^{2} - 9 \\
0 &= x^{2} + x - 12 \\
x &= \frac{-1 \pm \sqrt{1 + 48}}{2} = \frac{-1 \pm 7}{2}
\end{align*}
\]
Possible solutions: \(x = 3\) or \(x = -4\).
However, \(x = 3\) makes the denominator zero, so it's invalid.
**Answer:**
**a. \(-4\)**
---
### **5. Solve \( \frac{5}{6d} + \frac{5}{d} = 2 \)**
**Solution:**
\[
\begin{align*}
\frac{5}{6d} + \frac{5}{d} &= 2 \\
\frac{5}{6d} + \frac{30}{6d} &= 2 \quad \text{(Common denominator)} \\
\frac{35}{6d} &= 2 \\
35 &= 12d \\
d &= \frac{35}{12}
\end{align*}
\]
**Answer:**
**a. \( \frac{35}{12} \)**
---
### **6. Solve \( \frac{8}{5d} + \frac{3}{5d} = 6 \)**
**Solution:**
\[
\begin{align*}
\frac{8 + 3}{5d} &= 6 \\
\frac{11}{5d} &= 6 \\
11 &= 30d \\
d &= \frac{11}{30}
\end{align*}
\]
**Answer:**
**b. \( \frac{11}{30} \)**
---
### **7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). Find the two integers.**
**Solution:**
Let the two consecutive even integers be \( k \) and \( k + 2 \).
\[
\frac{1}{k} + \frac{1}{k + 2} = \frac{11}{60}
\]
**Solving the equation:**
\[
\begin{align*}
\frac{2k + 2}{k(k + 2)} &= \frac{11}{60} \\
2(k + 1) &= \frac{11}{60} k(k + 2) \\
120(k + 1) = 11k(k + 2) \quad \text{(Multiplying both sides by 60k(k+2))} \\
120k + 120 &= 11k^2 + 22k \\
11k^2 - 98k - 120 &= 0 \\
k &= \frac{98 \pm \sqrt{(-98)^2 - 4 \times 11 \times (-120)}}{2 \times 11} \\
k &= \frac{98 \pm \sqrt{9604 + 5280}}{22} \\
k &= \frac{98 \pm 122}{22}
\end{align*}
\]
Possible values:
\[
k = \frac{220}{22} = 10 \quad \text{or} \quad k = \frac{-24}{22} = -\frac{12}{11} \quad (\text{Discard non-integer value})
\]
Thus, the integers are **10** and **12**.
**Answer:**
**b. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 10 \text{ and } 12 \)**
---
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To solve the equation \( \frac{-5}{x-1}=\frac{3}{x-3} \), cross-multiply to get \(-5(x-3) = 3(x-1)\). Expanding both sides leads to \(-5x + 15 = 3x - 3\). Combining like terms gives \(8x = 18\), resulting in \(x = \frac{18}{8} = \frac{9}{4}\), making option c the correct answer! For equation number two, \(\frac{-5}{x-3}=\frac{-3}{x+3}\) also requires cross-multiplication. This yields \(-5(x+3) = -3(x-3)\). Distributing leads to \(-5x - 15 = -3x + 9\), combining gives \(-2x = 24\), resulting in \(x = -12\), confirming option a as the answer!