Question
upstudy study bank question image url

Multiple Choice Identify the choice that best completes the statement or answers the question. 1. \( \frac{-5}{x-1}=\frac{3}{x-3} \) a. \( \frac{18}{5} \) b. \( \frac{3}{8} \) c. \( \frac{9}{4} \) d. 0 2. \( \frac{-5}{x-3}=\frac{-3}{x+3} \) a. -12 b. -3 c. \( -\frac{9}{2} \) d. \( -\frac{24}{5} \) 3. \( \frac{a}{a^{2}-36}+\frac{2}{a-6}=\frac{1}{a+6} \) a. -9 b. -9 and -6 c. 6 d. -6 4. \( \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \) a. \( \quad-4 \) b. 3 or -4 c. \( \frac{-1 \pm \sqrt{73}}{2} \) d. 2 5. \( \frac{5}{6 d}+\frac{5}{d}=2 \) a. \( \frac{35}{12} \) b. \( \frac{5}{7} \) c. \( \frac{7}{2} \) d. \( \frac{35}{6} \) 6. \( \frac{8}{5 d}+\frac{3}{5 d}=6 \) a. \( \frac{11}{48} \) b. \( \frac{11}{30} \) c. \( \frac{11}{5} \) d. \( \frac{11}{60} \) 7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). Write an equation that can be used to find the two integers. Find the two integers. a. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 8 \) and 10 c. \( \quad k+(k+2)=\frac{11}{60} ; 8 \) and 10 b. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 10 \) and 12 d. \( \quad k+(k+2)=\frac{11}{60} ; 10 \) and 12

Ask by Ingram Kelley. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. **a. \( \frac{9}{4} \)** 2. **a. -12** 3. **a. -9** 4. **a. -4** 5. **a. \( \frac{35}{12} \)** 6. **b. \( \frac{11}{30} \)** 7. **b. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 10 \text{ and } 12 \)**

Solution

Let's solve each of the multiple-choice questions step by step. --- ### **1. Solve \( \frac{-5}{x-1} = \frac{3}{x-3} \)** **Solution:** \[ \begin{align*} \frac{-5}{x-1} &= \frac{3}{x-3} \\ -5(x - 3) &= 3(x - 1) \quad \text{(Cross-multiplying)} \\ -5x + 15 &= 3x - 3 \\ -5x - 3x &= -3 - 15 \\ -8x &= -18 \\ x &= \frac{-18}{-8} = \frac{9}{4} \end{align*} \] **Answer:** **c. \( \frac{9}{4} \)** --- ### **2. Solve \( \frac{-5}{x-3} = \frac{-3}{x+3} \)** **Solution:** \[ \begin{align*} \frac{-5}{x-3} &= \frac{-3}{x+3} \\ -5(x + 3) &= -3(x - 3) \quad \text{(Cross-multiplying)} \\ -5x - 15 &= -3x + 9 \\ -5x + 3x &= 9 + 15 \\ -2x &= 24 \\ x &= -12 \end{align*} \] **Answer:** **a. -12** --- ### **3. Solve \( \frac{a}{a^{2}-36} + \frac{2}{a-6} = \frac{1}{a+6} \)** **Solution:** \[ \begin{align*} a^{2} - 36 &= (a - 6)(a + 6) \\ \frac{a}{(a - 6)(a + 6)} + \frac{2}{a - 6} &= \frac{1}{a + 6} \\ \text{Multiply all terms by } (a - 6)(a + 6): \\ a + 2(a + 6) &= a - 6 \\ a + 2a + 12 &= a - 6 \\ 3a + 12 &= a - 6 \\ 2a &= -18 \\ a &= -9 \end{align*} \] *Note: \(a = -6\) would make the denominator zero, which is invalid.* **Answer:** **a. -9** --- ### **4. Solve \( \frac{6}{x^{2}-9} - \frac{1}{x-3} = 1 \)** **Solution:** \[ \begin{align*} x^{2} - 9 &= (x - 3)(x + 3) \\ \frac{6}{(x - 3)(x + 3)} - \frac{1}{x - 3} &= 1 \\ \text{Multiply all terms by } (x - 3)(x + 3): \\ 6 - (x + 3) &= (x - 3)(x + 3) \\ 6 - x - 3 &= x^{2} - 9 \\ 3 - x &= x^{2} - 9 \\ 0 &= x^{2} + x - 12 \\ x &= \frac{-1 \pm \sqrt{1 + 48}}{2} = \frac{-1 \pm 7}{2} \end{align*} \] Possible solutions: \(x = 3\) or \(x = -4\). However, \(x = 3\) makes the denominator zero, so it's invalid. **Answer:** **a. \(-4\)** --- ### **5. Solve \( \frac{5}{6d} + \frac{5}{d} = 2 \)** **Solution:** \[ \begin{align*} \frac{5}{6d} + \frac{5}{d} &= 2 \\ \frac{5}{6d} + \frac{30}{6d} &= 2 \quad \text{(Common denominator)} \\ \frac{35}{6d} &= 2 \\ 35 &= 12d \\ d &= \frac{35}{12} \end{align*} \] **Answer:** **a. \( \frac{35}{12} \)** --- ### **6. Solve \( \frac{8}{5d} + \frac{3}{5d} = 6 \)** **Solution:** \[ \begin{align*} \frac{8 + 3}{5d} &= 6 \\ \frac{11}{5d} &= 6 \\ 11 &= 30d \\ d &= \frac{11}{30} \end{align*} \] **Answer:** **b. \( \frac{11}{30} \)** --- ### **7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). Find the two integers.** **Solution:** Let the two consecutive even integers be \( k \) and \( k + 2 \). \[ \frac{1}{k} + \frac{1}{k + 2} = \frac{11}{60} \] **Solving the equation:** \[ \begin{align*} \frac{2k + 2}{k(k + 2)} &= \frac{11}{60} \\ 2(k + 1) &= \frac{11}{60} k(k + 2) \\ 120(k + 1) = 11k(k + 2) \quad \text{(Multiplying both sides by 60k(k+2))} \\ 120k + 120 &= 11k^2 + 22k \\ 11k^2 - 98k - 120 &= 0 \\ k &= \frac{98 \pm \sqrt{(-98)^2 - 4 \times 11 \times (-120)}}{2 \times 11} \\ k &= \frac{98 \pm \sqrt{9604 + 5280}}{22} \\ k &= \frac{98 \pm 122}{22} \end{align*} \] Possible values: \[ k = \frac{220}{22} = 10 \quad \text{or} \quad k = \frac{-24}{22} = -\frac{12}{11} \quad (\text{Discard non-integer value}) \] Thus, the integers are **10** and **12**. **Answer:** **b. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 10 \text{ and } 12 \)** ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equation \( \frac{-5}{x-1}=\frac{3}{x-3} \), cross-multiply to get \(-5(x-3) = 3(x-1)\). Expanding both sides leads to \(-5x + 15 = 3x - 3\). Combining like terms gives \(8x = 18\), resulting in \(x = \frac{18}{8} = \frac{9}{4}\), making option c the correct answer! For equation number two, \(\frac{-5}{x-3}=\frac{-3}{x+3}\) also requires cross-multiplication. This yields \(-5(x+3) = -3(x-3)\). Distributing leads to \(-5x - 15 = -3x + 9\), combining gives \(-2x = 24\), resulting in \(x = -12\), confirming option a as the answer!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy