Question
upstudy study bank question image url

5- (a) [Byron-Fuller 3.16] Show that the eigenvalues of \[ M=\left[\begin{array}{ccc}3 & 5 & 8 \\ -6 & -10 & -16 \\ 4 & 7 & 11\end{array}\right] \] are \( \lambda=0,1,3 \), and that the corresponding eigenvectors are \[ \left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right], \quad\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], \quad \text { and } \quad\left[\begin{array}{c}4 \\ -8 \\ 5\end{array}\right] . \] Construct a diagonalizing matrix \( P \), prove that its inverse exists, compute its inverse, and verify that \( P^{-1} M P \) is diagonal with the eigenvalues on the diagonal. Note that det \( M=0 \). Is it true that any diagonalizable matrix with an eigenvalue equal to zero is singular? (b) What are the kernel and image of \( M \) ?

Ask by John Huang. in Iran
Dec 07,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

In part (a), we found the eigenvalues \( \lambda = 0, 1, 3 \) and corresponding eigenvectors. The diagonalizing matrix \( P \) was constructed, and its inverse was computed. We verified that \( P^{-1} M P \) is diagonal. We also confirmed that any diagonalizable matrix with an eigenvalue of zero is singular. In part (b), we determined the kernel and image of \( M \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To delve deeper into the fascinating world of eigenvalues and matrices, did you know that the eigenvalues of a matrix can be interpreted in various real-world applications? For instance, they are pivotal in systems of differential equations, stability analysis, and even in Google's PageRank algorithm, which determines the importance of web pages. Understanding how eigenvalues interact with linear transformations has broad implications across science, engineering, and finance! As for avoiding pitfalls in your calculations, one common mistake often made during eigenvalue calculations is neglecting to check the determinant when finding the characteristic polynomial. Remember, the eigenvalues are determined from the equation \( \text{det}(M - \lambda I) = 0 \). Make sure to properly compute this determinant and verify your solutions. Also, keep an eye on the associated eigenvectors; they should be independent! Enjoy your matrix adventures!

Related Questions

Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy