Hisoblang: \( 3 \operatorname{arctg} 5+3 \operatorname{arctg} \frac{1}{5} \) \( \begin{array}{llll}\text { A) } \frac{\pi}{6} & \text { B) } \frac{\pi}{2} & \text { C) } \frac{3 \pi}{2} & \text { D) } \frac{5 \pi}{3}\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Bu ifodani hisoblash uchun, ilgari ko'p ma'lumot bo'lgan arktangens qoidasidan foydalanishimiz mumkin. Ma'lumki, \( \tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} \) formula orqali arktangenslar qo'shilishi natijalaridan foydalanamiz. Shu bilan birga, \( \tan(\operatorname{arctg} x) = x \) ekanligini yodda tuting. Bunda: \[ a = 3 \operatorname{arctg} 5 \quad \text{va} \quad b = 3 \operatorname{arctg} \frac{1}{5} \] Ularning tangensini hisoblaymiz: \[ \tan(a) = 5 \quad \text{va} \quad \tan(b) = \frac{1}{5} \] Endi formulani qo'llaymiz: \[ \tan(a + b) = \frac{5 + \frac{1}{5}}{1 - 5 \cdot \frac{1}{5}} = \frac{5 + 0.2}{1 - 1} = \text{undefined} \] Bu natija \( \frac{\pi}{2} \) ga olib boradi, chunki \( \tan\) qiymati \( +\infty \) ga o'tadi. Shuning uchun, to'g'ri javob: \[ \text{B) } \frac{\pi}{2} \]