Prove that, \( \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=\tan \theta+\cot \theta+1 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Let's start with the left-hand side of the equation: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} \] We can rewrite \(\cot \theta\) as \(\frac{1}{\tan \theta}\), which gives us: \[ \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{\frac{1}{\tan \theta}}{1 - \tan \theta} \] To simplify this, we can rewrite the terms inside the denominators. Starting with the first term: \[ 1 - \frac{1}{\tan \theta} = \frac{\tan \theta - 1}{\tan \theta} \] Thus, the first term becomes: \[ \frac{\tan \theta}{\frac{\tan \theta - 1}{\tan \theta}} = \frac{\tan^2 \theta}{\tan \theta - 1} \] Now for the second term: \[ 1 - \tan \theta = \frac{1 - \tan \theta}{1} \] So the second term now is: \[ \frac{\frac{1}{\tan \theta}}{1 - \tan \theta} = \frac{1}{\tan \theta(1 - \tan \theta)} \] Now, we rewrite the left-hand side: \[ \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta(1 - \tan \theta)} \] Next, to combine these fractions, we find a common denominator, which is \((\tan \theta - 1)\tan \theta\): \[ \frac{\tan^2 \theta \cdot \tan \theta}{(\tan \theta - 1)\tan \theta} + \frac{1 \cdot (\tan \theta - 1)}{(\tan \theta - 1)\tan \theta} \] This simplifies to: \[ \frac{\tan^3 \theta + \tan \theta - 1}{\tan \theta(\tan \theta - 1)} \] Now, we can factor the numerator: \[ \tan^3 \theta + \tan \theta - 1 = (\tan \theta - 1)(\tan^2 \theta + \tan \theta + 1) \] So now we have: \[ \frac{(\tan \theta - 1)(\tan^2 \theta + \tan \theta + 1)}{\tan \theta(\tan \theta - 1)} \] We can cancel \((\tan \theta - 1)\) from numerator and denominator (assuming \(\tan \theta \neq 1\)), yielding: \[ \frac{\tan^2 \theta + \tan \theta + 1}{\tan \theta} \] Now, we rewrite it: \[ \tan \theta + 1 + \frac{1}{\tan \theta} \] Recognizing that \(\frac{1}{\tan \theta} = \cot \theta\), we conclude: \[ \tan \theta + \cot \theta + 1 \] This shows that the left-hand side equals the right-hand side: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \tan \theta + \cot \theta + 1 \] Thus, we have proven that: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \tan \theta + \cot \theta + 1 \]