Question
upstudy study bank question image url

Prove that, \( \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=\tan \theta+\cot \theta+1 \)

Ask by Stuart Newton. in Bangladesh
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \tan \theta + \cot \theta + 1 \] **Answer:** After simplifying, both sides are equal: \[ \tan \theta + \cot \theta + 1 \]

Solution

To prove the identity: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \tan \theta + \cot \theta + 1 \] we'll start by expressing everything in terms of sine and cosine. ### Step 1: Express in Terms of Sine and Cosine Recall that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] Substitute these into the left-hand side (LHS) of the equation: \[ \text{LHS} = \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}} \] ### Step 2: Simplify the Denominators Simplify each denominator: \[ 1 - \frac{\cos \theta}{\sin \theta} = \frac{\sin \theta - \cos \theta}{\sin \theta} \] \[ 1 - \frac{\sin \theta}{\cos \theta} = \frac{\cos \theta - \sin \theta}{\cos \theta} = -\frac{\sin \theta - \cos \theta}{\cos \theta} \] ### Step 3: Rewrite the LHS Substitute the simplified denominators back into the LHS: \[ \text{LHS} = \frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta - \cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{-\frac{\sin \theta - \cos \theta}{\cos \theta}} \] Simplify the fractions: \[ \text{LHS} = \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} - \frac{\cos^2 \theta}{\sin \theta (\sin \theta - \cos \theta)} \] Combine the terms over a common denominator: \[ \text{LHS} = \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)} \] ### Step 4: Factor the Numerator Notice that: \[ \sin^3 \theta - \cos^3 \theta = (\sin \theta - \cos \theta)(\sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta) \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), this simplifies to: \[ \sin^3 \theta - \cos^3 \theta = (\sin \theta - \cos \theta)(1 + \sin \theta \cos \theta) \] ### Step 5: Simplify the Expression Substitute back into the LHS: \[ \text{LHS} = \frac{(\sin \theta - \cos \theta)(1 + \sin \theta \cos \theta)}{\sin \theta \cos \theta (\sin \theta - \cos \theta)} \] Cancel out \((\sin \theta - \cos \theta)\): \[ \text{LHS} = \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} + 1 \] ### Step 6: Relate to the Right-Hand Side (RHS) Recognize that: \[ \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} \] Thus: \[ \text{LHS} = \frac{1}{\sin \theta \cos \theta} + 1 = \tan \theta + \cot \theta + 1 = \text{RHS} \] ### Conclusion The identity holds true: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \tan \theta + \cot \theta + 1 \] **Answer:** After expanding, both sides reduce to 1/(sinθ cosθ) + 1. Thus, the equation holds: tanθ/(1 – cotθ) + cotθ/(1 – tanθ) = tanθ + cotθ + 1

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Let's start with the left-hand side of the equation: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} \] We can rewrite \(\cot \theta\) as \(\frac{1}{\tan \theta}\), which gives us: \[ \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{\frac{1}{\tan \theta}}{1 - \tan \theta} \] To simplify this, we can rewrite the terms inside the denominators. Starting with the first term: \[ 1 - \frac{1}{\tan \theta} = \frac{\tan \theta - 1}{\tan \theta} \] Thus, the first term becomes: \[ \frac{\tan \theta}{\frac{\tan \theta - 1}{\tan \theta}} = \frac{\tan^2 \theta}{\tan \theta - 1} \] Now for the second term: \[ 1 - \tan \theta = \frac{1 - \tan \theta}{1} \] So the second term now is: \[ \frac{\frac{1}{\tan \theta}}{1 - \tan \theta} = \frac{1}{\tan \theta(1 - \tan \theta)} \] Now, we rewrite the left-hand side: \[ \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta(1 - \tan \theta)} \] Next, to combine these fractions, we find a common denominator, which is \((\tan \theta - 1)\tan \theta\): \[ \frac{\tan^2 \theta \cdot \tan \theta}{(\tan \theta - 1)\tan \theta} + \frac{1 \cdot (\tan \theta - 1)}{(\tan \theta - 1)\tan \theta} \] This simplifies to: \[ \frac{\tan^3 \theta + \tan \theta - 1}{\tan \theta(\tan \theta - 1)} \] Now, we can factor the numerator: \[ \tan^3 \theta + \tan \theta - 1 = (\tan \theta - 1)(\tan^2 \theta + \tan \theta + 1) \] So now we have: \[ \frac{(\tan \theta - 1)(\tan^2 \theta + \tan \theta + 1)}{\tan \theta(\tan \theta - 1)} \] We can cancel \((\tan \theta - 1)\) from numerator and denominator (assuming \(\tan \theta \neq 1\)), yielding: \[ \frac{\tan^2 \theta + \tan \theta + 1}{\tan \theta} \] Now, we rewrite it: \[ \tan \theta + 1 + \frac{1}{\tan \theta} \] Recognizing that \(\frac{1}{\tan \theta} = \cot \theta\), we conclude: \[ \tan \theta + \cot \theta + 1 \] This shows that the left-hand side equals the right-hand side: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \tan \theta + \cot \theta + 1 \] Thus, we have proven that: \[ \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \tan \theta + \cot \theta + 1 \]

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy