\( \int \frac { d x } { \cos ( x ) - 1 } \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To evaluate the integral \( \int \frac { d x } { \cos ( x ) - 1 } \), we first manipulate the integrand. The expression \( \cos(x) - 1 \) can be rewritten using the identity \( \cos(x) = 1 - 2\sin^2\left(\frac{x}{2}\right) \), which gives us: \[ \cos(x) - 1 = -2\sin^2\left(\frac{x}{2}\right) \] Thus, the integral becomes: \[ \int \frac{dx}{\cos(x) - 1} = \int \frac{dx}{-2\sin^2\left(\frac{x}{2}\right)} = -\frac{1}{2}\int \csc^2\left(\frac{x}{2}\right) dx \] Knowing that the integral of \( \csc^2(u) \) is \( -\cot(u) + C \), we can make a substitution \( u = \frac{x}{2} \). Then \( du = \frac{1}{2}dx \) or \( dx = 2du \), resulting in: \[ -\frac{1}{2}\int \csc^2\left(u\right)(2du) = -\int \csc^2\left(u\right) du = -\cot(u) + C \] Finally, substituting back \( u = \frac{x}{2} \): \[ -\cot\left(\frac{x}{2}\right) + C \] So the integral evaluates to: \[ \int \frac{dx}{\cos(x) - 1} = -\cot\left(\frac{x}{2}\right) + C \]