Question
upstudy study bank question image url

\( \int \frac { d x } { \cos ( x ) - 1 } \)

Ask by Todd Lowe. in Iran
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral of \( \frac{1}{\cos(x) - 1} \) with respect to \( x \) is \( \cot\left(\frac{x}{2}\right) + C \), where \( C \) is the constant of integration.

Solution

To evaluate the integral: \[ \int \frac{dx}{\cos(x) - 1} \] we can use a trigonometric identity and substitution to simplify the expression. **Step 1: Use a Trigonometric Identity** Recall that: \[ \cos(x) - 1 = -2 \sin^2\left(\frac{x}{2}\right) \] So, the integral becomes: \[ \int \frac{dx}{\cos(x) - 1} = \int \frac{dx}{-2 \sin^2\left(\frac{x}{2}\right)} = -\frac{1}{2} \int \frac{dx}{\sin^2\left(\frac{x}{2}\right)} \] **Step 2: Substitute** Let: \[ u = \frac{x}{2} \quad \Rightarrow \quad du = \frac{dx}{2} \quad \Rightarrow \quad dx = 2\,du \] Substituting into the integral: \[ -\frac{1}{2} \int \frac{2\,du}{\sin^2(u)} = -\int \csc^2(u)\,du \] **Step 3: Integrate** We know that: \[ \int \csc^2(u)\,du = -\cot(u) + C \] So, \[ -\int \csc^2(u)\,du = \cot(u) + C \] **Step 4: Substitute Back** Replace \( u \) with \( \frac{x}{2} \): \[ \cot\left(\frac{x}{2}\right) + C \] **Final Answer:** \[ \int \frac{dx}{\cos(x) - 1} = \cot\left(\frac{x}{2}\right) + C \] where \( C \) is the constant of integration. **Verification:** To confirm, differentiate \( \cot\left(\frac{x}{2}\right) \): \[ \frac{d}{dx} \cot\left(\frac{x}{2}\right) = -\frac{1}{2} \csc^2\left(\frac{x}{2}\right) \] Thus, \[ -\frac{1}{2} \csc^2\left(\frac{x}{2}\right) = \frac{1}{\cos(x) - 1} \] which verifies our result. **Final Answer:** After simplifying, an antiderivative is cot ½x plus C. Thus, ∫dx⁄(cos x – 1) = cot(x⁄2) + C

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the integral \( \int \frac { d x } { \cos ( x ) - 1 } \), we first manipulate the integrand. The expression \( \cos(x) - 1 \) can be rewritten using the identity \( \cos(x) = 1 - 2\sin^2\left(\frac{x}{2}\right) \), which gives us: \[ \cos(x) - 1 = -2\sin^2\left(\frac{x}{2}\right) \] Thus, the integral becomes: \[ \int \frac{dx}{\cos(x) - 1} = \int \frac{dx}{-2\sin^2\left(\frac{x}{2}\right)} = -\frac{1}{2}\int \csc^2\left(\frac{x}{2}\right) dx \] Knowing that the integral of \( \csc^2(u) \) is \( -\cot(u) + C \), we can make a substitution \( u = \frac{x}{2} \). Then \( du = \frac{1}{2}dx \) or \( dx = 2du \), resulting in: \[ -\frac{1}{2}\int \csc^2\left(u\right)(2du) = -\int \csc^2\left(u\right) du = -\cot(u) + C \] Finally, substituting back \( u = \frac{x}{2} \): \[ -\cot\left(\frac{x}{2}\right) + C \] So the integral evaluates to: \[ \int \frac{dx}{\cos(x) - 1} = -\cot\left(\frac{x}{2}\right) + C \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy