Question
upstudy study bank question image url

(1) \( \frac{2 x}{3}-\frac{3 y}{2}=1 \) \( x+y=4 \)

Ask by Schneider Estrada. in Argentina
Nov 07,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución del sistema de ecuaciones es \( x = \frac{42}{13} \) y \( y = \frac{10}{13} \).

Solution

Para resolver el sistema de ecuaciones: 1. \( \frac{2x}{3} - \frac{3y}{2} = 1 \) 2. \( x + y = 4 \) Primero, despejamos \( y \) de la segunda ecuación: \[ y = 4 - x \] Ahora sustituimos \( y \) en la primera ecuación: \[ \frac{2x}{3} - \frac{3(4 - x)}{2} = 1 \] Simplificamos la ecuación: \[ \frac{2x}{3} - \frac{12 - 3x}{2} = 1 \] Multiplicamos toda la ecuación por 6 (el mínimo común múltiplo de 3 y 2) para eliminar los denominadores: \[ 6 \left( \frac{2x}{3} \right) - 6 \left( \frac{12 - 3x}{2} \right) = 6 \cdot 1 \] Esto se convierte en: \[ 4x - 36 + 9x = 6 \] Combinamos términos semejantes: \[ 13x - 36 = 6 \] Sumamos 36 a ambos lados: \[ 13x = 42 \] Dividimos entre 13: \[ x = \frac{42}{13} \] Ahora sustituimos \( x \) en la ecuación \( y = 4 - x \): \[ y = 4 - \frac{42}{13} = \frac{52}{13} - \frac{42}{13} = \frac{10}{13} \] Por lo tanto, la solución del sistema de ecuaciones es: \[ x = \frac{42}{13}, \quad y = \frac{10}{13} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve this system of equations, we can start by manipulating the first equation to express one variable in terms of the other. From the first equation, \( \frac{2x}{3} = 1 + \frac{3y}{2} \). Multiplying through by 6 to eliminate the fractions gives us \( 4x = 6 + 9y \), or \( 4x - 9y = 6 \). Now, we have the equations: 1. \( 4x - 9y = 6 \) 2. \( x + y = 4 \) Next, we can express \( x \) from the second equation as \( x = 4 - y \). Substituting this into the first equation gives us: \( 4(4 - y) - 9y = 6 \) This simplifies to \( 16 - 4y - 9y = 6 \), or \( 16 - 13y = 6 \). Thus, \( -13y = -10 \), leading to \( y = \frac{10}{13} \). Now substituting \( y \) back into \( x + y = 4 \) gives us \( x + \frac{10}{13} = 4 \), so \( x = 4 - \frac{10}{13} = \frac{52}{13} - \frac{10}{13} = \frac{42}{13} \). Thus, the solution is: \( x = \frac{42}{13} \) and \( y = \frac{10}{13} \). Now you have the values of \( x \) and \( y \) in a fraction form that’s not only correct but mathematically sound! 🎉

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy