Question
upstudy study bank question image url

\( 7 ^ { - | x - 3 | } \cdot \log _ { 2 } ( 6 x - x ^ { 2 } - 7 ) \geq 1 \)

Ask by George Hanson. in Russia
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Решением неравенства \( 7^{-|x - 3|} \cdot \log_{2}(6x - x^{2} - 7) \geq 1 \) является \( x = 3 \).

Solution

Решим неравенство: \[ 7^{-|x - 3|} \cdot \log_{2}(6x - x^{2} - 7) \geq 1 \] **Шаг 1: Определение области определения** Для начала определим область определения функции. Логарифм определен, когда выражение внутри него положительно: \[ 6x - x^{2} - 7 > 0 \\ \Rightarrow -x^{2} + 6x - 7 > 0 \\ \Rightarrow x^{2} - 6x + 7 < 0 \] Решим квадратное неравенство: \[ x = \frac{6 \pm \sqrt{36 - 28}}{2} = \frac{6 \pm \sqrt{8}}{2} = 3 \pm \sqrt{2} \] Таким образом, область определения: \( x \in (3 - \sqrt{2},\, 3 + \sqrt{2}) \). **Шаг 2: Решение неравенства** Неравенство можно переписать как: \[ \log_{2}(6x - x^{2} - 7) \geq 7^{|x - 3|} \] Рассмотрим функцию слева и справа от неравенства: - Функция \( \log_{2}(6x - x^{2} - 7) \) достигает максимального значения 1 при \( x = 3 \). - Функция \( 7^{|x - 3|} \) равна 1 при \( x = 3 \) и возрастает при удалении \( x \) от 3. Таким образом, единственной точкой, где неравенство выполняется, является \( x = 3 \). **Ответ:** Решением неравенства является \( x = 3 \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the inequality \( 7 ^ { - | x - 3 | } \cdot \log _ { 2 } ( 6 x - x ^ { 2 } - 7 ) \geq 1 \), we start with the left-hand side. The expression \( 7^{- |x - 3|} \) is always positive, as any positive number raised to any power (including negative) remains positive. This means we can safely manipulate the inequality by dividing both sides by this term, leading us to: \[ \log_{2}(6x - x^2 - 7) \geq 7^{|x - 3|} \] Next, we need to ensure that the argument of the logarithm is positive, which leads us to solve: \[ 6x - x^2 - 7 > 0 \] This is a quadratic inequality, and we can rearrange it to: \[ -x^2 + 6x - 7 > 0 \implies x^2 - 6x + 7 < 0 \] Now, solve the equation \( x^2 - 6x + 7 = 0 \) using the quadratic formula: \[ x = \frac{6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot 7}}{2 \cdot 1} = \frac{6 \pm \sqrt{36 - 28}}{2} = \frac{6 \pm \sqrt{8}}{2} = \frac{6 \pm 2\sqrt{2}}{2} = 3 \pm \sqrt{2} \] The roots \( 3 - \sqrt{2} \) and \( 3 + \sqrt{2} \) divide the number line into intervals. We can test each interval to determine where the quadratic is negative: 1. For \( x < 3 - \sqrt{2} \) (choose \( x = 0 \)): \( 0^2 - 6 \cdot 0 + 7 = 7 > 0 \) 2. For \( 3 - \sqrt{2} < x < 3 + \sqrt{2} \) (choose \( x = 3 \)): \( 3^2 - 6 \cdot 3 + 7 = 7 - 18 + 7 = -4 < 0 \) 3. For \( x > 3 + \sqrt{2} \) (choose \( x = 5 \)): \( 5^2 - 6 \cdot 5 + 7 = 25 - 30 + 7 = 2 > 0 \) The quadratic is negative between the roots, so: \[ 3 - \sqrt{2} < x < 3 + \sqrt{2} \] Now considering the right side of our inequality \( 7^{|x - 3|} \), we have two cases based on the value of \( x \) relative to 3. For \( x < 3 \), \( |x - 3| = 3 - x \) and for \( x \geq 3 \), \( |x - 3| = x - 3 \). Testing each region will help us finalize our solution set. Ultimately, we find intersecting ranges considering both logarithm positivity and inequalities on both sides. To solve efficiently, we can graph the functions \( y = \log_{2}(6x - x^2 - 7) \) and \( y = 7^{|x - 3|} \) and look for their intersections within the identified interval \( (3 - \sqrt{2}, 3 + \sqrt{2}) \). To conclude, always check the solutions against the original conditions to ensure they fit the logarithmic constraints!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy