Question
Upstudy AI Solution
Tutor-Verified Answer
Answer
Решением неравенства
является
.
Solution
Решим неравенство:
Шаг 1: Определение области определения
Для начала определим область определения функции. Логарифм определен, когда выражение внутри него положительно:
Решим квадратное неравенство:
Таким образом, область определения:
.
Шаг 2: Решение неравенства
Неравенство можно переписать как:
Рассмотрим функцию слева и справа от неравенства:
- Функция
достигает максимального значения 1 при . - Функция
равна 1 при и возрастает при удалении от 3.
Таким образом, единственной точкой, где неравенство выполняется, является
.
Ответ:
Решением неравенства является
.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Mind Expander
To solve the inequality
, we start with the left-hand side. The expression
is always positive, as any positive number raised to any power (including negative) remains positive. This means we can safely manipulate the inequality by dividing both sides by this term, leading us to:
Next, we need to ensure that the argument of the logarithm is positive, which leads us to solve:
This is a quadratic inequality, and we can rearrange it to:
Now, solve the equation
using the quadratic formula:
The roots
and
divide the number line into intervals. We can test each interval to determine where the quadratic is negative:
- For
(choose ): - For
(choose ): - For
(choose ):
The quadratic is negative between the roots, so:
Now considering the right side of our inequality
, we have two cases based on the value of
relative to 3.
For
,
and for
,
.
Testing each region will help us finalize our solution set. Ultimately, we find intersecting ranges considering both logarithm positivity and inequalities on both sides. To solve efficiently, we can graph the functions
and
and look for their intersections within the identified interval
.
To conclude, always check the solutions against the original conditions to ensure they fit the logarithmic constraints!