Question
upstudy study bank question image url

1) \( \operatorname{sen} 2 x+\operatorname{sen} x=0 \)

Ask by Gibson Klein. in Bolivia
Dec 18,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones de la ecuación \(\sin 2x + \sin x = 0\) son: \[ x = k\pi, \quad x = \frac{2\pi}{3} + 2k\pi, \quad x = \frac{4\pi}{3} + 2k\pi \quad \text{donde } k \text{ es cualquier entero.} \]

Solution

Para resolver la ecuación trigonométrica: \[ \sin 2x + \sin x = 0 \] seguimos los siguientes pasos: ### Paso 1: Utilizar la identidad trigonométrica para \(\sin 2x\) Sabemos que: \[ \sin 2x = 2 \sin x \cos x \] Sustituyendo en la ecuación original: \[ 2 \sin x \cos x + \sin x = 0 \] ### Paso 2: Factorizar \(\sin x\) Factorizamos \(\sin x\) de los términos: \[ \sin x (2 \cos x + 1) = 0 \] ### Paso 3: Resolver las ecuaciones resultantes Esta factorización nos da dos ecuaciones que resolver: 1. **Primera ecuación:** \[ \sin x = 0 \] Las soluciones para esta ecuación son: \[ x = k\pi \quad \text{donde } k \in \mathbb{Z} \] 2. **Segunda ecuación:** \[ 2 \cos x + 1 = 0 \quad \Rightarrow \quad \cos x = -\frac{1}{2} \] Las soluciones para \(\cos x = -\frac{1}{2}\) en el intervalo \([0, 2\pi)\) son: \[ x = \frac{2\pi}{3} + 2k\pi \quad \text{y} \quad x = \frac{4\pi}{3} + 2k\pi \quad \text{donde } k \in \mathbb{Z} \] ### Solución General Por lo tanto, las soluciones generales de la ecuación \(\sin 2x + \sin x = 0\) son: \[ x = k\pi \quad \text{o} \quad x = \frac{2\pi}{3} + 2k\pi \quad \text{o} \quad x = \frac{4\pi}{3} + 2k\pi \quad \text{donde } k \in \mathbb{Z} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve \( \operatorname{sen} 2x + \operatorname{sen} x = 0 \), we can use the double angle identity \( \operatorname{sen} 2x = 2 \operatorname{sen} x \operatorname{cos} x \). This transforms the equation into \( 2 \operatorname{sen} x \operatorname{cos} x + \operatorname{sen} x = 0 \), which can be factored to \( \operatorname{sen} x (2 \operatorname{cos} x + 1) = 0 \). This gives us two cases: \( \operatorname{sen} x = 0 \) and \( 2 \operatorname{cos} x + 1 = 0 \). For the first case, \( \operatorname{sen} x = 0 \) leads to \( x = n\pi \), where \( n \) is any integer. In the second case, solving \( \operatorname{cos} x = -\frac{1}{2} \) gives \( x = \frac{2\pi}{3} + 2k\pi \) or \( x = \frac{4\pi}{3} + 2k\pi \) for any integer \( k \). Hence, the complete solution set is \( x = n\pi \) and \( x = \frac{2\pi}{3} + 2k\pi \) or \( x = \frac{4\pi}{3} + 2k\pi \). For real-world applications, understanding trigonometric equations is essential in fields like physics, engineering, and computer graphics. For instance, they help model periodic phenomena such as sound waves, light waves, or even the motion of pendulums. Being able to solve these equations allows professionals to predict behaviors and design systems effectively. A common mistake in solving trigonometric equations is neglecting the multiple solutions that come from periodic properties. For example, while many might find one or two solutions, the periodic nature of \( \sin(x) \) means each solution repeats every \( 2\pi \) radians. Always remember to account for the general solution, adding multiples of the period to capture all possible angles that satisfy the equation.

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy