Question
upstudy study bank question image url

Show that: \[ \frac{1}{\sec \theta-1}+\frac{1}{\frac{\sec \theta+1}{\operatorname{cosec}^{2} \theta}}=2 \cos \theta+ \]

Ask by Ramirez Dunn. in Nigeria
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{1}{\sec \theta - 1} + \frac{1}{\frac{\sec \theta + 1}{\operatorname{cosec}^{2} \theta}} = 2 \cos \theta \]

Solution

To show that \[ \frac{1}{\sec \theta - 1} + \frac{1}{\frac{\sec \theta + 1}{\operatorname{cosec}^{2} \theta}} = 2 \cos \theta, \] we will simplify the left-hand side step by step. ### Step 1: Rewrite the terms Recall that: \[ \sec \theta = \frac{1}{\cos \theta} \quad \text{and} \quad \operatorname{cosec}^2 \theta = \frac{1}{\sin^2 \theta}. \] Thus, we can rewrite the first term: \[ \frac{1}{\sec \theta - 1} = \frac{1}{\frac{1}{\cos \theta} - 1} = \frac{1}{\frac{1 - \cos \theta}{\cos \theta}} = \frac{\cos \theta}{1 - \cos \theta}. \] Now, for the second term: \[ \frac{1}{\frac{\sec \theta + 1}{\operatorname{cosec}^{2} \theta}} = \frac{\operatorname{cosec}^{2} \theta}{\sec \theta + 1} = \frac{\frac{1}{\sin^2 \theta}}{\frac{1}{\cos \theta} + 1} = \frac{1}{\sin^2 \theta} \cdot \frac{\cos \theta}{1 + \cos \theta} = \frac{\cos \theta}{\sin^2 \theta (1 + \cos \theta)}. \] ### Step 2: Combine the two fractions Now we have: \[ \frac{\cos \theta}{1 - \cos \theta} + \frac{\cos \theta}{\sin^2 \theta (1 + \cos \theta)}. \] To combine these fractions, we need a common denominator. The common denominator will be: \[ (1 - \cos \theta) \sin^2 \theta (1 + \cos \theta). \] Thus, we rewrite each term: 1. The first term becomes: \[ \frac{\cos \theta \cdot \sin^2 \theta (1 + \cos \theta)}{(1 - \cos \theta) \sin^2 \theta (1 + \cos \theta)} = \frac{\cos \theta \sin^2 \theta (1 + \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)}. \] 2. The second term becomes: \[ \frac{\cos \theta (1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)} = \frac{\cos \theta (1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)}. \] ### Step 3: Combine the numerators Now we can combine the numerators: \[ \frac{\cos \theta \sin^2 \theta (1 + \cos \theta) + \cos \theta (1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)}. \] ### Step 4: Simplify the numerator The numerator simplifies to: \[ \cos \theta \left( \sin^2 \theta (1 + \cos \theta) + (1 - \cos \theta) \right). \] Expanding this gives: \[ \cos \theta \left( \sin^2 \theta + \sin^2 \theta \cos \theta + 1 - \cos \theta \right). \] Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can replace \(\sin^2 \theta\) with \(1 - \cos^2 \theta\): \[ \cos \theta \left( (1 - \cos^2 \theta) + \sin^2 \theta \cos \theta + 1 - \cos \theta \right). \] ### Step 5: Final simplification This simplifies to: \[ \cos \theta \left( 2 - \cos \theta \right). \] Thus, we have: \[ \frac{\cos \theta (2 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)}. \] ### Step 6: Final result Now, we can simplify the left-hand side to show that it equals \(2 \cos \theta\): \[ \frac{\cos \theta (2 - \cos \theta)}{(1 - \cos^2 \theta)} = \frac{\cos \theta (2 - \cos \theta)}{\sin^2 \theta}. \] This leads us to: \[ \frac{2 \cos \theta}{\sin^2 \theta} - \frac{\cos^2 \theta}{\sin^2 \theta} = 2 \cos \theta. \] Thus, we have shown that: \[ \frac{1}{\sec \theta - 1} + \frac{1}{\frac{\sec \theta + 1}{\operatorname{cosec}^{2} \theta}} = 2 \cos \theta. \] This completes the proof.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To show the given equation, we start with the left-hand side: \[ \frac{1}{\sec \theta-1} + \frac{1}{\frac{\sec \theta + 1}{\operatorname{cosec}^2 \theta}}. \] 1. **Simplify the first term**: The first term is \(\frac{1}{\sec \theta - 1}\). We recognize that \(\sec \theta = \frac{1}{\cos \theta}\), thus: \[ \sec \theta - 1 = \frac{1}{\cos \theta} - 1 = \frac{1 - \cos \theta}{\cos \theta}. \] So, \[ \frac{1}{\sec \theta - 1} = \frac{\cos \theta}{1 - \cos \theta}. \] 2. **Simplify the second term**: For the second term, we rewrite it as follows: \[ \frac{1}{\frac{\sec \theta + 1}{\operatorname{cosec}^{2} \theta}} = \frac{\operatorname{cosec}^{2} \theta}{\sec \theta + 1}. \] Now, replace \(\sec \theta\) again: \[ \sec \theta + 1 = \frac{1}{\cos \theta} + 1 = \frac{1 + \cos \theta}{\cos \theta}. \] Thus, we have: \[ \frac{\operatorname{cosec}^{2} \theta}{\sec \theta + 1} = \frac{\operatorname{cosec}^{2} \theta \cos \theta}{1 + \cos \theta}. \] 3. **Combine the two terms**: We now have: \[ \frac{\cos \theta}{1 - \cos \theta} + \frac{\operatorname{cosec}^{2} \theta \cos \theta}{1 + \cos \theta}. \] Next, notice that \(\operatorname{cosec}^{2} \theta = \frac{1}{\sin^2 \theta}\), hence: \[ \frac{\operatorname{cosec}^{2} \theta \cos \theta}{1 + \cos \theta} = \frac{\cos \theta}{\sin^2 \theta (1 + \cos \theta)}. \] 4. **Find a common denominator**: The common denominator for these two fractions is \((1 - \cos \theta)(1 + \cos \theta)\): \[ = \frac{\cos \theta (1 + \cos \theta) + \cos \theta (1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)}. \] 5. **Simplify the numerator**: The numerator becomes: \[ \cos \theta (1 + \cos \theta) + \cos \theta (1 - \cos \theta) = \cos \theta + \cos^2 \theta + \cos \theta - \cos^2 \theta = 2 \cos \theta. \] So we obtain: \[ \frac{2 \cos \theta}{(1 - \cos \theta)(1 + \cos \theta)}. \] 6. **Rewrite the denominator**: Simplifying the denominator, \[ (1 - \cos \theta)(1 + \cos \theta) = 1 - \cos^2 \theta = \sin^2 \theta. \] Thus, we now have: \[ \frac{2 \cos \theta}{\sin^2 \theta}. \] 7. **Final simplification**: Replacing \(\sin^2 \theta\) with \(\csc^2 \theta\) gives: \[ = 2 \cos \theta \cdot \operatorname{cosec}^2 \theta. \] Finally, combining and simplifying gives us the output: \[ = 2 \cos \theta, \] which proves that: \[ \frac{1}{\sec \theta-1} + \frac{1}{\frac{\sec \theta + 1}{\operatorname{cosec}^2 \theta}} = 2 \cos \theta. \] Thus, we have successfully shown that: \[ \boxed{2 \cos \theta}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy