Question
upstudy study bank question image url

Beregn \( \int_{0}^{\frac{\pi}{4}} x \cos x d x \)

Ask by John Spencer. in Denmark
Jan 01,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Den integralfænomen \( \int_{0}^{\frac{\pi}{4}} x \cos x d x \) er \( \frac{\sqrt{2}\times \pi +4\sqrt{2}-8}{8} \).

Solution

Calculate the integral \( \int_{0}^{\frac{\pi}{4}} x \cos x d x \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int_{0}^{\frac{\pi }{4}} x\cos\left(x\right) dx\) - step1: Evaluate the integral: \(\int x\cos\left(x\right) dx\) - step2: Prepare for integration by parts: \(\begin{align}&u=x\\&dv=\cos\left(x\right)dx\end{align}\) - step3: Calculate the derivative: \(\begin{align}&du=dx\\&dv=\cos\left(x\right)dx\end{align}\) - step4: Evaluate the integral: \(\begin{align}&du=dx\\&v=\sin\left(x\right)\end{align}\) - step5: Substitute the values into formula: \(x\sin\left(x\right)-\int 1\times \sin\left(x\right) dx\) - step6: Calculate: \(x\sin\left(x\right)-\int \sin\left(x\right) dx\) - step7: Evaluate the integral: \(x\sin\left(x\right)+\cos\left(x\right)\) - step8: Return the limits: \(\left(x\sin\left(x\right)+\cos\left(x\right)\right)\bigg |_{0}^{\frac{\pi }{4}}\) - step9: Calculate the value: \(\frac{\sqrt{2}\times \pi +4\sqrt{2}-8}{8}\) Die Integrale von \( \int_{0}^{\frac{\pi}{4}} x \cos x d x \) ist \( \frac{\sqrt{2}\times \pi +4\sqrt{2}-8}{8} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

For å beregne \( I = \int_{0}^{\frac{\pi}{4}} x \cos x \, dx \), kan vi bruke delvis integrasjon. La oss sette \( u = x \) og \( dv = \cos x \, dx \). Da får vi \( du = dx \) og \( v = \sin x \). Ved å bruke formelen for delvis integrasjon, \( \int u \, dv = uv - \int v \, du \), får vi: \[ I = \left[ x \sin x \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \sin x \, dx \] Nå evaluerer vi den første termen: \[ \left[ x \sin x \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} \sin\left(\frac{\pi}{4}\right) - 0 = \frac{\pi}{4} \cdot \frac{\sqrt{2}}{2} = \frac{\pi \sqrt{2}}{8} \] Nå må vi beregne den andre integralen: \[ \int_{0}^{\frac{\pi}{4}} \sin x \, dx = \left[-\cos x\right]_{0}^{\frac{\pi}{4}} = -\cos\left(\frac{\pi}{4}\right) + \cos(0) = -\frac{\sqrt{2}}{2} + 1 = 1 - \frac{\sqrt{2}}{2} \] Setter nå alt sammen: \[ I = \frac{\pi \sqrt{2}}{8} - \left( 1 - \frac{\sqrt{2}}{2} \right) = \frac{\pi \sqrt{2}}{8} - 1 + \frac{\sqrt{2}}{2} \] For å kombinere leddene, kan vi uttrykke \( \frac{\sqrt{2}}{2} \) som \( \frac{4\sqrt{2}}{8} \): \[ I = \frac{\pi \sqrt{2}}{8} - 1 + \frac{4\sqrt{2}}{8} = \frac{(\pi + 4)\sqrt{2}}{8} - 1 \] Dermed får vi svaret: \[ I = \frac{(\pi + 4)\sqrt{2}}{8} - 1 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy