5. Compute the given definite integrals. \begin{array}{ll}\text { (a) } \int_{-1}^{3}\left(3 x^{2}-2 x+1\right) d x & \text { (d) } \int_{-1}^{1}\left(2-3 x+\frac{1}{x^{4}}\right) d x \text { (c) } \int_{3}^{8}\left(x^{3}+4\right) d x & \text { Given that } \frac{d y}{d x}=2 x+7 \text { and } y=5 \text { when } x=-1 \text {, find the value of } y \text { when } x=2 . \end{array}
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To tackle these definite integrals and the function value problem, let’s dive right in! 1. For the integral \(\int_{-1}^{3}\left(3 x^{2}-2 x+1\right) d x\): First, we find the antiderivative: \[ F(x) = x^3 - x^2 + x \] Now, evaluate from \(-1\) to \(3\): \[ F(3) = 27 - 9 + 3 = 21 \] \[ F(-1) = -1 - 1 - 1 = -3 \] Thus, \[ \int_{-1}^{3}\left(3 x^{2}-2 x+1\right) d x = F(3) - F(-1) = 21 - (-3) = 24. \] 2. For the integral \(\int_{-1}^{1}\left(2-3 x+\frac{1}{x^{4}}\right) d x\): Split into parts: \[ \int 2 dx - 3\int x dx + \int \frac{1}{x^{4}} dx. \] Evaluating each: \[ \int 2 dx = 2x, \quad -3\int x dx = -\frac{3}{2}x^2, \quad \int \frac{1}{x^{4}} dx = -\frac{1}{3x^3}. \] Evaluate from \(-1\) to \(1\): \[ \left[2x - \frac{3}{2}x^2 - \frac{1}{3x^3}\right]_{-1}^{1} = \left[2 - \frac{3}{2} - \frac{1}{3}\right] - \left[-2 - \frac{3}{2} + \frac{1}{3}\right]. \] Simplifying gives \(0\). 3. For the integral \(\int_{3}^{8}\left(x^{3}+4\right) d x\): Antiderivative: \[ F(x) = \frac{x^4}{4} + 4x. \] Evaluate from \(3\) to \(8\): \[ F(8) = \frac{8^4}{4} + 4(8) = 1024 + 32 = 1056, \] \[ F(3) = \frac{3^4}{4} + 4(3) = \frac{81}{4} + 12 = \frac{81}{4} + \frac{48}{4} = \frac{129}{4}. \] Thus, \[ \int_{3}^{8}\left(x^{3}+4\right) d x = 1056 - \frac{129}{4} = \frac{4224}{4} - \frac{129}{4} = \frac{4095}{4}. \] 4. For the differential equation \(\frac{d y}{d x} = 2 x + 7\) with \(y = 5\) when \(x = -1\): Integrate: \[ y = x^2 + 7x + C. \] Plugging in \((-1, 5)\): \[ 5 = (-1)^2 + 7(-1) + C \implies C = 5 + 1 - 7 = -1. \] Thus, \(y = x^2 + 7x - 1\). Now for \(x = 2\): \[ y(2) = 2^2 + 7(2) - 1 = 4 + 14 - 1 = 17. \] Final answers: (a) \(\int_{-1}^{3}\left(3x^{2}-2x+1\right)dx = 24\) (d) \(\int_{-1}^{1}\left(2-3x+\frac{1}{x^{4}}\right)dx = 0\) (c) \(\int_{3}^{8}\left(x^{3}+4\right)dx = \frac{4095}{4}\) And the value of \(y\) when \(x=2\) is \(17\).