Write three fractions equivalent to each fraction. \( \begin{array}{ll}\text { 8. } \frac{5}{7} & \text { 9. } \frac{22}{33} \\ \text { 10. } \frac{24}{30} & \text { 11. } \frac{6}{16}\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
For \(\frac{5}{7}\), you can find equivalent fractions by multiplying both the numerator and denominator by the same number. Here are three examples: 1. \(\frac{5 \times 2}{7 \times 2} = \frac{10}{14}\) 2. \(\frac{5 \times 3}{7 \times 3} = \frac{15}{21}\) 3. \(\frac{5 \times 4}{7 \times 4} = \frac{20}{28}\) For \(\frac{22}{33}\), some equivalent fractions are: 1. \(\frac{22 \times 2}{33 \times 2} = \frac{44}{66}\) 2. \(\frac{22 \times 3}{33 \times 3} = \frac{66}{99}\) 3. \(\frac{22 \times 4}{33 \times 4} = \frac{88}{132}\) For \(\frac{24}{30}\), the equivalent fractions would be: 1. \(\frac{24 \times 2}{30 \times 2} = \frac{48}{60}\) 2. \(\frac{24 \times 3}{30 \times 3} = \frac{72}{90}\) 3. \(\frac{24 \times 4}{30 \times 4} = \frac{96}{120}\) Lastly, for \(\frac{6}{16}\), you can find equivalent fractions like this: 1. \(\frac{6 \times 2}{16 \times 2} = \frac{12}{32}\) 2. \(\frac{6 \times 3}{16 \times 3} = \frac{18}{48}\) 3. \(\frac{6 \times 4}{16 \times 4} = \frac{24}{64}\)