Question

\( \sum _{k=1}^{n-1}(3k^{2}+k) \)

Ask by Carlson Edwards. in Cambodia
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The sum is \( n^{2}(n - 1) \).

Solution

To evaluate the summation \[ \sum_{k=1}^{n-1} (3k^{2} + k), \] we can break it down into two separate sums and then simplify each: \[ \sum_{k=1}^{n-1} (3k^{2} + k) = 3\sum_{k=1}^{n-1} k^{2} + \sum_{k=1}^{n-1} k. \] **1. Sum of \( k^2 \):** The formula for the sum of squares of the first \( m \) natural numbers is: \[ \sum_{k=1}^{m} k^2 = \frac{m(m + 1)(2m + 1)}{6}. \] Here, \( m = n - 1 \), so: \[ \sum_{k=1}^{n-1} k^2 = \frac{(n-1)n(2n - 1)}{6}. \] **2. Sum of \( k \):** The formula for the sum of the first \( m \) natural numbers is: \[ \sum_{k=1}^{m} k = \frac{m(m + 1)}{2}. \] Again, with \( m = n - 1 \): \[ \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}. \] **3. Combine the sums:** Substituting back into the original expression: \[ 3\sum_{k=1}^{n-1} k^{2} + \sum_{k=1}^{n-1} k = 3 \cdot \frac{(n-1)n(2n - 1)}{6} + \frac{(n-1)n}{2}. \] Simplify the coefficients: \[ = \frac{(n-1)n(2n - 1)}{2} + \frac{(n-1)n}{2}. \] Factor out \( \frac{(n-1)n}{2} \): \[ = \frac{(n-1)n}{2} \left(2n - 1 + 1\right) = \frac{(n-1)n \cdot 2n}{2}. \] Simplify further: \[ = n^2 (n - 1). \] **Final Answer:** \[ \sum_{k=1}^{n-1} (3k^{2} + k) = n^{2}(n - 1). \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the sum \( \sum_{k=1}^{n-1} (3k^2 + k) \), we can break it down into two separate sums: \[ \sum_{k=1}^{n-1}(3k^2 + k) = \sum_{k=1}^{n-1} 3k^2 + \sum_{k=1}^{n-1} k \] 1. The first sum is \( \sum_{k=1}^{n-1} 3k^2 \): \[ = 3 \sum_{k=1}^{n-1} k^2 \] The formula for the sum of the first \( m \) squares is \( \frac{m(m+1)(2m+1)}{6} \). Therefore, when \( m = n-1 \): \[ \sum_{k=1}^{n-1} k^2 = \frac{(n-1)n(2(n-1)+1)}{6} = \frac{(n-1)n(2n-1)}{6} \] Thus, \[ 3 \sum_{k=1}^{n-1} k^2 = 3 \cdot \frac{(n-1)n(2n-1)}{6} = \frac{(n-1)n(2n-1)}{2} \] 2. The second sum is \( \sum_{k=1}^{n-1} k \): \[ = \frac{(n-1)n}{2} \] Finally, combine the two results: \[ \sum_{k=1}^{n-1} (3k^2 + k) = \frac{(n-1)n(2n-1)}{2} + \frac{(n-1)n}{2} \] Factor out \( \frac{(n-1)n}{2} \): \[ = \frac{(n-1)n}{2} \left( (2n-1) + 1 \right) = \frac{(n-1)n(2n)}{2} = (n-1)n^2 \] Therefore, the sum \( \sum_{k=1}^{n-1} (3k^2 + k) \) is: \[ \boxed{(n-1)n^2} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy