Rationalize the denominator and simplify: \( \frac{\sqrt{6 x^{3}+\sqrt{5 x^{5}}}}{\sqrt{3 x^{2}}} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To rationalize the denominator and simplify the expression \( \frac{\sqrt{6 x^{3}+\sqrt{5 x^{5}}}}{\sqrt{3 x^{2}}} \), we start by simplifying both the numerator and the denominator. The denominator is: \[ \sqrt{3x^{2}} = \sqrt{3} \cdot \sqrt{x^{2}} = \sqrt{3} \cdot x \] Now let's focus on the numerator \( \sqrt{6 x^{3}+\sqrt{5 x^{5}}} \): We can simplify \( \sqrt{5 x^{5}} \) as follows: \[ \sqrt{5 x^{5}} = \sqrt{5} \cdot \sqrt{x^{5}} = \sqrt{5} \cdot x^{\frac{5}{2}} = \sqrt{5} \cdot x^2 \cdot \sqrt{x} = x^2 \sqrt{5x} \] Thus, the numerator becomes: \[ \sqrt{6 x^{3} + x^2 \sqrt{5x}} = \sqrt{x^2(6x + \sqrt{5x})} = x \sqrt{6x + \sqrt{5x}} \] Putting it all together: \[ \frac{\sqrt{6 x^{3} + \sqrt{5 x^{5}}}}{\sqrt{3 x^{2}}} = \frac{x \sqrt{6x + \sqrt{5x}}}{\sqrt{3} \cdot x} \] The \( x \) terms in the numerator and denominator cancel (assuming \( x \neq 0 \)): \[ = \frac{\sqrt{6x + \sqrt{5x}}}{\sqrt{3}} = \frac{1}{\sqrt{3}} \sqrt{6x + \sqrt{5x}} \] Finally, we can simplify further: \[ = \frac{\sqrt{6x + \sqrt{5x}}}{\sqrt{3}} = \sqrt{\frac{6x + \sqrt{5x}}{3}} \] Thus, the simplified expression is: \[ \sqrt{\frac{6x + \sqrt{5x}}{3}} \]