Question
Add the polynomials: \( (4x^{2} + 3x - 5) + (2x^{2} - 7x + 10) \)
Ask by Cole Spencer. in Malaysia
Nov 30,2024
Real Tutor Solution
Tutor-Verified Answer
Answer
\( 6x^{2} - 4x + 5 \)
Solution
Calculate or simplify the expression \( (4x^2 + 3x - 5) + (2x^2 - 7x + 10) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(4x^{2}+3x-5\right)+\left(2x^{2}-7x+10\right)\)
- step1: Remove the parentheses:
\(4x^{2}+3x-5+2x^{2}-7x+10\)
- step2: Add the terms:
\(6x^{2}-4x+5\)
The sum of the polynomials \( (4x^{2} + 3x - 5) + (2x^{2} - 7x + 10) \) is \( 6x^{2} - 4x + 5 \).
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
To add the polynomials \( (4x^{2} + 3x - 5) + (2x^{2} - 7x + 10) \), simply combine like terms. Starting with the \(x^{2}\) terms: \( 4x^{2} + 2x^{2} = 6x^{2} \) Next, the \(x\) terms: \( 3x - 7x = -4x \) Finally, the constant terms: \( -5 + 10 = 5 \) Putting it all together, the sum of the polynomials is: \( 6x^{2} - 4x + 5 \)