Find each dot product. Then state whether the angle between the vectors is \( >\mathbf{9 0 ^ { \circ }},\left\langle\mathbf{9 0 ^ { \circ }}\right. \), or \( =\mathbf{9 0 ^ { \circ }} \). \( \begin{array}{ll}\text { 7. }\langle 2,3\rangle \cdot\langle 5,7\rangle & \text { 8. }\langle-1,-4\rangle \cdot\langle 2,-3\rangle \\ \text { 9. }\langle 4,8\rangle \cdot\langle 4,-2\rangle & \text { 10. }\langle-4,6\rangle \cdot\langle 6,-9\rangle\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let's calculate the dot products for each pair of vectors and analyze the angles. 1. For \(\langle 2, 3 \rangle \cdot \langle 5, 7 \rangle\): \[ \langle 2, 3 \rangle \cdot \langle 5, 7 \rangle = (2 \times 5) + (3 \times 7) = 10 + 21 = 31 \] To find the angle: \[ \text{Since } \text{dot product} > 0, \text{the angle } < 90^\circ. \] 2. For \(\langle -1, -4 \rangle \cdot \langle 2, -3 \rangle\): \[ \langle -1, -4 \rangle \cdot \langle 2, -3 \rangle = (-1 \times 2) + (-4 \times -3) = -2 + 12 = 10 \] Here, the dot product is also positive: \[ \text{Since } \text{dot product} > 0, \text{the angle } < 90^\circ. \] 3. For \(\langle 4, 8 \rangle \cdot \langle 4, -2 \rangle\): \[ \langle 4, 8 \rangle \cdot \langle 4, -2 \rangle = (4 \times 4) + (8 \times -2) = 16 - 16 = 0 \] A dot product of zero indicates: \[ \text{Angle } = 90^\circ. \] 4. For \(\langle -4, 6 \rangle \cdot \langle 6, -9 \rangle\): \[ \langle -4, 6 \rangle \cdot \langle 6, -9 \rangle = (-4 \times 6) + (6 \times -9) = -24 - 54 = -78 \] Here, the dot product is negative: \[ \text{Since } \text{dot product} < 0, \text{the angle } > 90^\circ. \] In summary: 7. Angle \( < 90^\circ \) with dot product of 31. 8. Angle \( < 90^\circ \) with dot product of 10. 9. Angle \( = 90^\circ \) with dot product of 0. 10. Angle \( > 90^\circ \) with dot product of -78.