Question
upstudy study bank question image url

En funktion f er løsning til differentialligningen: \( \frac{d y}{d x}=3 \cdot x+2 \cdot y \) Det oplyses, at tangenten til grafen for fi punktet \( \mathrm{P}(1, \mathrm{f}(1)) \) har hældningskoefficenten 9 . a) Bestem en ligning for tangenten til grafen for f i punktet \( \mathrm{P}(1, \mathrm{f}(1)) \).

Ask by Maxwell King. in Denmark
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Tangenten til grafen for \( f \) i punktet \( \mathrm{P}(1, 3) \) er \( y = 9x - 6 \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

For at bestemme ligningen for tangenten til grafen for \( f \) i punktet \( P(1, f(1)) \), kan vi bruge tangentens formel \( y - y_1 = m(x - x_1) \), hvor \( m \) er hældningskoefficienten, og \( (x_1, y_1) \) er punktet på grafen. Her er hældningskoefficienten \( m = 9 \), og punktet er \( P(1, f(1)) \). Sætter vi værdierne ind i tangentens formel, får vi: \[ y - f(1) = 9(x - 1) \] Dette kan omskrives til: \[ y = 9x - 9 + f(1) \] Så tangenten til grafen i \( P(1, f(1)) \) har ligningen \( y = 9x + (f(1) - 9) \). Nu er det vigtigt at finde \( f(1) \) for at kunne give en konkret ligning for tangenten!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy