Let \( A=\left[\begin{array}{ccc}0 & 2 & 2 \\ 0 & -2 & -2 \\ 0 & 4 & 4\end{array}\right] \) (a) Find the dimension of ker \( A \) and give \( a \) basis. Dimension:
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the dimension of the kernel of the matrix \( A = \left[\begin{array}{ccc}0 & 2 & 2 \\ 0 & -2 & -2 \\ 0 & 4 & 4\end{array}\right] \), we first perform row reduction to find its reduced row echelon form (RREF). Starting with \( A \): \[ \begin{bmatrix} 0 & 2 & 2 \\ 0 & -2 & -2 \\ 0 & 4 & 4 \end{bmatrix} \] Swap the second and first rows, and then divide the first row by 2: \[ \begin{bmatrix} 0 & 1 & 1 \\ 0 & -2 & -2 \\ 0 & 4 & 4 \end{bmatrix} \] Next, normalize the second row by multiplying it by -1/2: \[ \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 4 & 4 \end{bmatrix} \] Now eliminate the contributions from row three: \[ \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \] This matrix indicates that we have 1 leading 1 (i.e., a pivot) in the second column. The number of variables (3) minus the number of pivots (1) gives us the dimension of the kernel. Thus, the dimension of the kernel of \( A \) is \( 3 - 1 = 2 \). To find the basis, set \( x_2 = t \) and \( x_3 = s \). Then from the first row, \[ x_1 + t + s = 0 \implies x_1 = -t - s \] By substituting different values for \( t \) and \( s \), we can write the general solution in vector form: \[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \] Thus, a basis for the kernel of \( A \) is: \[ \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\} \] To conclude: **Dimension: 2** **Basis: \( \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\} \)**