Question
upstudy study bank question image url

Find the deteominants \[ \left[\begin{array}{ccc}2 & -1 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & 1\end{array}\right] \]

Ask by Hobbs Crawford. in Pakistan
Nov 30,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

The determinant is 1.

Solution

Calculate the determinant of the matrix \( \begin{bmatrix}2 & -1 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & 1\end{bmatrix} \). Matrices by following steps: - step0: Evaluate the determinant: \(\left[\begin{array}{rrr}{2}&{-1}&{1}\\{3}&{1}&{2}\\{1}&{1}&{1}\end{array}\right]\) - step1: Use the appropriate notation: \(\left|\begin{array}{cc}{2}&{-1}&{1}\\{3}&{1}&{2}\\{1}&{1}&{1}\end{array}\right|\) - step2: Use cofactor expansion along a row: \(2\times \left|\begin{array}{cc}{1}&{2}\\{1}&{1}\end{array}\right|-\left(-\left|\begin{array}{cc}{3}&{2}\\{1}&{1}\end{array}\right|\right)+1\times \left|\begin{array}{cc}{3}&{1}\\{1}&{1}\end{array}\right|\) - step3: Evaluate the determinant: \(2\left(-1\right)-\left(-1\right)+1\times 2\) - step4: Evaluate: \(-2-\left(-1\right)+2\) - step5: Rewrite the expression: \(-2+1+2\) - step6: Add the numbers: \(1\) The determinant of the given matrix is 1.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the determinant of the matrix \[ A = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \] we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg). \] For our matrix, we assign the values as follows: \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \] where \( a = 2, b = -1, c = 1, d = 3, e = 1, f = 2, g = 1, h = 1, i = 1 \). Now, we can plug these values into the determinant formula: 1. For \( ei - fh = 1 \cdot 1 - 2 \cdot 1 = 1 - 2 = -1 \). 2. For \( di - fg = 3 \cdot 1 - 2 \cdot 1 = 3 - 2 = 1 \). 3. For \( dh - eg = 3 \cdot 1 - 1 \cdot 1 = 3 - 1 = 2 \). Now substituting these results back into the determinant formula: \[ \text{det}(A) = 2(-1) - (-1)(1) + 1(2) \] \[ = -2 + 1 + 2 \] \[ = -2 + 3 = 1. \] Thus, the determinant of the matrix is \[ \boxed{1}. \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy