Question

\( 4\times ^{2}-20\times -24=0 \)

Ask by Colon Dawson. in Mexico
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones son \( x = 6 \) y \( x = -1 \).

Solution

Claro, resolvamos la ecuación cuadrática paso a paso. Dada la ecuación: \[ 4x^2 - 20x - 24 = 0 \] **Paso 1: Simplificar la ecuación** Primero, podemos simplificar la ecuación dividiendo todos los términos por 4: \[ x^2 - 5x - 6 = 0 \] **Paso 2: Aplicar la fórmula cuadrática** La fórmula cuadrática para resolver \( ax^2 + bx + c = 0 \) es: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] En nuestra ecuación simplificada: - \( a = 1 \) - \( b = -5 \) - \( c = -6 \) Sustituyendo estos valores en la fórmula: \[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} \] \[ x = \frac{5 \pm \sqrt{25 + 24}}{2} \] \[ x = \frac{5 \pm \sqrt{49}}{2} \] \[ x = \frac{5 \pm 7}{2} \] **Paso 3: Calcular las soluciones** 1. Primera solución: \[ x = \frac{5 + 7}{2} = \frac{12}{2} = 6 \] 2. Segunda solución: \[ x = \frac{5 - 7}{2} = \frac{-2}{2} = -1 \] **Conclusión:** Las soluciones de la ecuación cuadrática \( 4x^2 - 20x - 24 = 0 \) son: \[ x = 6 \quad \text{y} \quad x = -1 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let's break down the equation step by step! First, to solve \( 4x^2 - 20x - 24 = 0 \), you can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here, \( a = 4 \), \( b = -20 \), and \( c = -24 \). After plugging in these values and simplifying, you'll find the roots of this quadratic equation! Remember to check if you can simplify the equation first! In this case, you can divide the whole equation by 4, yielding \( x^2 - 5x - 6 = 0 \). Then, you can either factor it directly or apply the quadratic formula, but factoring might be a fun challenge since it breaks down to \( (x - 6)(x + 1) = 0 \). Now, you have the solutions \( x = 6 \) and \( x = -1 \)! Happy solving!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy