Question
upstudy study bank question image url

\( \int \frac{\text { Factor the diferonce of two squaros. }}{36-x^{2}} 33-x^{2}=\square \)

Ask by Murray Williams. in the United States
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral of \( \frac{33 - x^{2}}{36 - x^{2}} \) with respect to \( x \) is: \[ x + \frac{1}{4} \ln\left(\frac{|x-6|}{|x+6|}\right) + C \] where \( C \) is the constant of integration.

Solution

Calculate or simplify the expression \( \int \frac{33-x^{2}}{36-x^{2}} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{33-x^{2}}{36-x^{2}} dx\) - step1: Rearrange the terms: \(\int -\frac{33-x^{2}}{x^{2}-36} dx\) - step2: Rewrite the fraction: \(\int -\left(-1-\frac{3}{x^{2}-36}\right) dx\) - step3: Calculate: \(\int \left(1+\frac{3}{x^{2}-36}\right) dx\) - step4: Use properties of integrals: \(\int 1 dx+\int \frac{3}{x^{2}-36} dx\) - step5: Evaluate the integral: \(x+\int \frac{3}{x^{2}-36} dx\) - step6: Evaluate the integral: \(x+\frac{1}{4}\ln{\left(\left|x-6\right|\right)}-\frac{1}{4}\ln{\left(\left|x+6\right|\right)}\) - step7: Subtract the terms: \(x+\frac{1}{4}\ln{\left(\frac{\left|x-6\right|}{\left|x+6\right|}\right)}\) - step8: Add the constant of integral C: \(x+\frac{1}{4}\ln{\left(\frac{\left|x-6\right|}{\left|x+6\right|}\right)} + C, C \in \mathbb{R}\) The integral of \( \frac{33-x^{2}}{36-x^{2}} \) with respect to \( x \) is given by: \[ \int \frac{33-x^{2}}{36-x^{2}} dx = x + \frac{1}{4} \ln\left(\frac{|x-6|}{|x+6|}\right) + C \] where \( C \) is the constant of integration.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the integral, we first factor the difference of two squares in the denominator: \( 36 - x^2 \) can be rewritten as \( (6 - x)(6 + x) \). Thus, the integral becomes: \[ \int \frac{33 - x^2}{36 - x^2} \, dx = \int \frac{33 - x^2}{(6 - x)(6 + x)} \, dx. \] Next, we can split the integrand using partial fraction decomposition to make it more manageable. Assuming \( \frac{33 - x^2}{(6 - x)(6 + x)} = \frac{A}{6 - x} + \frac{B}{6 + x} \), we can find constants \( A \) and \( B \) by clearing the fractions and equating coefficients. Once we have \( A \) and \( B \), we can integrate each term separately. This will lead us towards the final answer, but the main takeaway is recognizing how to handle the fraction in the integral by using algebraic techniques.

Related Questions

5. O \( x \) na inequação, \( \sqrt{6-2 x}>\sqrt{x} \) varia de: A. \( [0 ; 2[ \) B. \( 10 ; 3[ \) C. \( 11 ; 2] \) D. \( \left[0 ; \frac{7}{3}[\right. \) E. \( \left[1 ; \frac{1}{3}[\right. \) 6. A solução da inequação, \( -15 x^{2}-2 x+1>0 \) é: A. ]-3;5[ B. \( \frac{1}{5} ; \frac{1}{3}[ \) C. ] \( -\frac{1}{5} ; \frac{1}{3}[ \) D. ]-5;3[ E. \( ]-\frac{1}{3} ; \frac{1}{5}[ \) 7. O primeiro termo de uma sucessão é \( 5 \sqrt{2} \) e a sua razão é \( \sqrt{2} \) qual é o número de termos se o último termo é igual a 160? A. 2 B. 4 C. 6 D. 8 E. 10 8. Quantas itinerários são possíveis se de A para B existem 5 caminhos e de B para C existem 9 caminhos? A. 5 B. 9 C. 14 D. 45 E. NDA 9. Resolvendo a inequação \( \log _{4}\left(x^{2}-x-2\right) \leq 1 \) a solução é: A. \( x \in[-2 ;-1[U] 2 ; 3] \) B. \( x \in[-2 ; 3] \) C. \( x \in]-2 ; 3[ \) D. \( x \in[-1 ; 1] \) E. \( x \in[-2 ;-1] \cup[2 ; 3] \) 10. Qual é em percentagem três quintos de dois terços: A. 10 B. 20 C. 30 D. 40 E. 50 11. Quatro sétimos de um certo valor é 60 . Quanto é o dobro desse valor? A. 35 B. 70 C. 105 D. 210 E. NDA 12. Um produto aumentou \( 20 \% \) e de seguida diminuiu \( 20 \% \), qual foi a variação \( \mathrm{em} \% \) : A. 3 B. 4 C. 5 D. 6 E. NDA 13. A razão sumo-água numa garrafa azul é de \( 4 / 3 \) e na garrafa verde é de \( 6 / 5 \). Suas capacidades são de 21 e 22 litros, respectivamente, a razão da mistura é: A. 22/21 B. \( 21 / 22 \) C. \( 24 / 19 \) D. \( 5 / 4 \) E. NDA 14. Previa-se distribuir 60 garrafas de refrescos a um certo número de pessoas. Afinal apareceram 2 pessoas a menos e assim cada uma das presentes recebeu mais 5 garrafas. Quantas pessoas eram? A. 10 B. 12 C. 20 D. 24 E. NDA 15. Qual é a recta tangente à curva \( f(x)=x+e^{-2 x} \) com o eixo \( O X \) : A. \( y=-x+1 \) B. \( y=x \) C. \( y=-x \) D. \( y=x+1 \) E. NDA 16. Qual é função que gera a seguinte função \( y^{\prime}=\operatorname{tg} x \) : A. \( y=\ln (\cos x) \) B. \( y=\ln (\operatorname{sen} x) \) C. \( y=-\ln (\cos x) \) D. \( y=\ln (\operatorname{tg} x) \) E. NDA 17. A derivada da função \( y=x^{e} \cdot e^{x} \) é: A. \( y^{\prime}=e^{x}\left(e x^{e-1}+1\right) \) B. \( y=e x^{e} \) C. \( y=x e^{x} \) D. \( y=x e^{x-1} \) E. NDA
Calculus Mozambique Jan 27, 2025

Latest Calculus Questions

5. O \( x \) na inequação, \( \sqrt{6-2 x}>\sqrt{x} \) varia de: A. \( [0 ; 2[ \) B. \( 10 ; 3[ \) C. \( 11 ; 2] \) D. \( \left[0 ; \frac{7}{3}[\right. \) E. \( \left[1 ; \frac{1}{3}[\right. \) 6. A solução da inequação, \( -15 x^{2}-2 x+1>0 \) é: A. ]-3;5[ B. \( \frac{1}{5} ; \frac{1}{3}[ \) C. ] \( -\frac{1}{5} ; \frac{1}{3}[ \) D. ]-5;3[ E. \( ]-\frac{1}{3} ; \frac{1}{5}[ \) 7. O primeiro termo de uma sucessão é \( 5 \sqrt{2} \) e a sua razão é \( \sqrt{2} \) qual é o número de termos se o último termo é igual a 160? A. 2 B. 4 C. 6 D. 8 E. 10 8. Quantas itinerários são possíveis se de A para B existem 5 caminhos e de B para C existem 9 caminhos? A. 5 B. 9 C. 14 D. 45 E. NDA 9. Resolvendo a inequação \( \log _{4}\left(x^{2}-x-2\right) \leq 1 \) a solução é: A. \( x \in[-2 ;-1[U] 2 ; 3] \) B. \( x \in[-2 ; 3] \) C. \( x \in]-2 ; 3[ \) D. \( x \in[-1 ; 1] \) E. \( x \in[-2 ;-1] \cup[2 ; 3] \) 10. Qual é em percentagem três quintos de dois terços: A. 10 B. 20 C. 30 D. 40 E. 50 11. Quatro sétimos de um certo valor é 60 . Quanto é o dobro desse valor? A. 35 B. 70 C. 105 D. 210 E. NDA 12. Um produto aumentou \( 20 \% \) e de seguida diminuiu \( 20 \% \), qual foi a variação \( \mathrm{em} \% \) : A. 3 B. 4 C. 5 D. 6 E. NDA 13. A razão sumo-água numa garrafa azul é de \( 4 / 3 \) e na garrafa verde é de \( 6 / 5 \). Suas capacidades são de 21 e 22 litros, respectivamente, a razão da mistura é: A. 22/21 B. \( 21 / 22 \) C. \( 24 / 19 \) D. \( 5 / 4 \) E. NDA 14. Previa-se distribuir 60 garrafas de refrescos a um certo número de pessoas. Afinal apareceram 2 pessoas a menos e assim cada uma das presentes recebeu mais 5 garrafas. Quantas pessoas eram? A. 10 B. 12 C. 20 D. 24 E. NDA 15. Qual é a recta tangente à curva \( f(x)=x+e^{-2 x} \) com o eixo \( O X \) : A. \( y=-x+1 \) B. \( y=x \) C. \( y=-x \) D. \( y=x+1 \) E. NDA 16. Qual é função que gera a seguinte função \( y^{\prime}=\operatorname{tg} x \) : A. \( y=\ln (\cos x) \) B. \( y=\ln (\operatorname{sen} x) \) C. \( y=-\ln (\cos x) \) D. \( y=\ln (\operatorname{tg} x) \) E. NDA 17. A derivada da função \( y=x^{e} \cdot e^{x} \) é: A. \( y^{\prime}=e^{x}\left(e x^{e-1}+1\right) \) B. \( y=e x^{e} \) C. \( y=x e^{x} \) D. \( y=x e^{x-1} \) E. NDA
Calculus Mozambique Jan 27, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy