Question
upstudy study bank question image url

\( 1 \leftarrow \quad \) Simplify the following expression. Write the result using positive exponents. \[ \frac{\left(-3 x y^{-4}\right)^{-4}}{\left(x y^{-3}\right)^{-3}} \]

Ask by Elliott Stewart. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{y^{7}}{81x} \).

Solution

Calculate or simplify the expression \( \frac{(-3xy^{-4})^{-4}}{(xy^{-3})^{-3}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(-3xy^{-4}\right)^{-4}}{\left(xy^{-3}\right)^{-3}}\) - step1: Express with a positive exponent: \(\frac{\frac{1}{\left(-3xy^{-4}\right)^{4}}}{\left(xy^{-3}\right)^{-3}}\) - step2: Express with a positive exponent: \(\frac{\frac{1}{\left(-3xy^{-4}\right)^{4}}}{\frac{1}{\left(xy^{-3}\right)^{3}}}\) - step3: Multiply by the reciprocal: \(\frac{1}{\left(-3xy^{-4}\right)^{4}}\times \left(xy^{-3}\right)^{3}\) - step4: Multiply the terms: \(\frac{\left(xy^{-3}\right)^{3}}{\left(-3xy^{-4}\right)^{4}}\) - step5: Calculate: \(\frac{x^{3}y^{-9}}{81x^{4}y^{-16}}\) - step6: Reduce the fraction: \(\frac{y^{7}}{81x}\) The simplified expression is \( \frac{y^{7}}{81x} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify the expression \(\frac{\left(-3 x y^{-4}\right)^{-4}}{\left(x y^{-3}\right)^{-3}}\), we start by simplifying the numerator and the denominator separately. 1. **Numerator:** \[ \left(-3 x y^{-4}\right)^{-4} = \frac{1}{\left(-3 x y^{-4}\right)^{4}} = \frac{1}{(-3)^{4} (x)^{4} (y^{-4})^{4}} = \frac{1}{81 x^4 y^{-16}} = \frac{y^{16}}{81 x^4} \] 2. **Denominator:** \[ \left(x y^{-3}\right)^{-3} = \frac{1}{\left(x y^{-3}\right)^{3}} = \frac{1}{(x)^{3} (y^{-3})^{3}} = \frac{1}{x^3 y^{-9}} = \frac{y^{9}}{x^3} \] Now substitute these back into the expression: \[ \frac{\frac{y^{16}}{81 x^{4}}}{\frac{y^{9}}{x^{3}}} = \frac{y^{16}}{81 x^{4}} \cdot \frac{x^{3}}{y^{9}} = \frac{y^{16} x^{3}}{81 x^{4} y^{9}} \] Next, we simplify the fraction: \[ = \frac{x^{3}}{81 x^{4}} \cdot \frac{y^{16}}{y^{9}} = \frac{1}{81 x^{4-3}} \cdot y^{16-9} = \frac{1}{81 x} y^{7} \] Thus, the final simplified expression using positive exponents is: \[ \frac{y^{7}}{81 x} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy