Directions: Find the sum or difference for each problem. Show your work and write each answer on its corresponding answer line. \( \begin{array}{llll}\text { 19) } \\ 6 \frac{6}{8}-1 \frac{7}{8} & \text { 20) } 1 \frac{1}{2}+7 \frac{1}{2} & \text { 21) } 10 \frac{3}{5}+2 \frac{3}{5} & \text { 22) } 3 \frac{1}{4}-2 \frac{2}{4}\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Sure! Let's calculate each of these problems step by step. **19) \( 6 \frac{6}{8}-1 \frac{7}{8} \)** First, convert to improper fractions: \( 6 \frac{6}{8} = \frac{6 \times 8 + 6}{8} = \frac{54}{8} \) \( 1 \frac{7}{8} = \frac{1 \times 8 + 7}{8} = \frac{15}{8} \) Now, subtract the fractions: \( \frac{54}{8} - \frac{15}{8} = \frac{54 - 15}{8} = \frac{39}{8} \) Convert back to a mixed number: \( \frac{39}{8} = 4 \frac{7}{8} \) **Answer:** \( 4 \frac{7}{8} \) --- **20) \( 1 \frac{1}{2}+7 \frac{1}{2} \)** Convert to improper fractions: \( 1 \frac{1}{2} = \frac{1 \times 2 + 1}{2} = \frac{3}{2} \) \( 7 \frac{1}{2} = \frac{7 \times 2 + 1}{2} = \frac{15}{2} \) Now, add the fractions: \( \frac{3}{2} + \frac{15}{2} = \frac{3 + 15}{2} = \frac{18}{2} = 9 \) **Answer:** \( 9 \) --- **21) \( 10 \frac{3}{5}+2 \frac{3}{5} \)** Convert to improper fractions: \( 10 \frac{3}{5} = \frac{10 \times 5 + 3}{5} = \frac{53}{5} \) \( 2 \frac{3}{5} = \frac{2 \times 5 + 3}{5} = \frac{13}{5} \) Now, add the fractions: \( \frac{53}{5} + \frac{13}{5} = \frac{53 + 13}{5} = \frac{66}{5} \) Convert back to a mixed number: \( \frac{66}{5} = 13 \frac{1}{5} \) **Answer:** \( 13 \frac{1}{5} \) --- **22) \( 3 \frac{1}{4}-2 \frac{2}{4} \)** Convert to improper fractions: \( 3 \frac{1}{4} = \frac{3 \times 4 + 1}{4} = \frac{13}{4} \) \( 2 \frac{2}{4} = \frac{2 \times 4 + 2}{4} = \frac{10}{4} \) Now, subtract the fractions: \( \frac{13}{4} - \frac{10}{4} = \frac{13 - 10}{4} = \frac{3}{4} \) **Answer:** \( \frac{3}{4} \)