Question
upstudy study bank question image url

Cari terbitan pertama bagi \( f(x)=\frac{2}{x+4} \) dengan menggunakan prinsip pertama. Find the first derivative of \( f(x)=\frac{2}{x+4} \) by using the first principle.

Ask by Potter Vaughn. in Malaysia
Jan 09,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( f(x) = \frac{2}{x+4} \) 的导数是 \( f'(x) = -\frac{2}{(x+4)^2} \)。

Solution

要使用**第一性原理**求函数 \( f(x) = \frac{2}{x+4} \) 的导数,我们按照导数的定义进行计算: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] **步骤如下:** 1. **计算 \( f(x+h) \):** \[ f(x+h) = \frac{2}{(x + h) + 4} = \frac{2}{x + 4 + h} \] 2. **计算 \( f(x+h) - f(x) \):** \[ f(x+h) - f(x) = \frac{2}{x + 4 + h} - \frac{2}{x + 4} \] 3. **通分并简化:** \[ f(x+h) - f(x) = 2 \left( \frac{1}{x + 4 + h} - \frac{1}{x + 4} \right) = 2 \left( \frac{(x + 4) - (x + 4 + h)}{(x + 4)(x + 4 + h)} \right) = \frac{-2h}{(x + 4)(x + 4 + h)} \] 4. **将差商除以 \( h \):** \[ \frac{f(x+h) - f(x)}{h} = \frac{-2h}{h (x + 4)(x + 4 + h)} = \frac{-2}{(x + 4)(x + 4 + h)} \] 5. **取极限 \( h \to 0 \):** \[ f'(x) = \lim_{h \to 0} \frac{-2}{(x + 4)(x + 4 + h)} = \frac{-2}{(x + 4)^2} \] **最终结果:** \[ f'(x) = -\frac{2}{(x + 4)^2} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Untuk mencari terbitan pertama bagi fungsi \( f(x) = \frac{2}{x+4} \) menggunakan prinsip pertama, kita perlu menggunakan definisi terbitan. Definisi terbitan menyatakan bahawa: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] Mari kita hitung \( f(x+h) \): \[ f(x+h) = \frac{2}{(x+h)+4} = \frac{2}{x+h+4} \] Seterusnya, kita masukkan ke dalam formula terbitan: \[ f'(x) = \lim_{h \to 0} \frac{\frac{2}{x+h+4} - \frac{2}{x+4}}{h} \] Kita perlu menyamakan penyebut: \[ = \lim_{h \to 0} \frac{2(x+4) - 2(x+h+4)}{h(x+h+4)(x+4)} \] Simplifikasi menjadi: \[ = \lim_{h \to 0} \frac{2(x+4 - (x+h+4))}{h(x+h+4)(x+4)} = \lim_{h \to 0} \frac{-2h}{h(x+h+4)(x+4)} = \lim_{h \to 0} \frac{-2}{(x+h+4)(x+4)} \] Apabila \( h \) menghampiri 0, kita dapatkan: \[ f'(x) = \frac{-2}{(x+4)^2} \] Dan itu merupakan terbitan pertama bagi \( f(x)=\frac{2}{x+4} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy