Question
upstudy study bank question image url

1. Sabendo que e \( \log 2=0,30 \) e \( \log 3=0,48 \) calcule cada um dos logaritmos a seguir. \[ \begin{array}{lll}\text { a) } \log 16 & \text { e) } \log 5 \\ \text { b) } \log 0,2 & \text { f) } \log 0,003 \\ \text { c) } \log 6 & \text { g) } \log 1,08 \\ \text { d) } \log 18 & \end{array} \]

Ask by Reeves Nichols. in Brazil
Nov 05,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

a) \( \log 16 = 1,20 \) b) \( \log 0,2 = -0,70 \) c) \( \log 6 = 0,78 \) d) \( \log 18 = 1,26 \) e) \( \log 5 = 0,70 \) f) \( \log 0,003 = -2,52 \) g) \( \log 1,08 = 0,04 \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Vamos resolver cada um dos logaritmos utilizando as propriedades dos logaritmos e os valores fornecidos (\( \log 2 = 0,30 \) e \( \log 3 = 0,48 \)). **a) \( \log 16 \)** Sabemos que \( 16 = 2^4 \). Assim, \[ \log 16 = \log(2^4) = 4 \cdot \log 2 = 4 \cdot 0,30 = 1,20. \] **b) \( \log 0,2 \)** Como \( 0,2 = \frac{2}{10} = \frac{2}{2 \cdot 5} = \frac{1}{5} \), temos: \[ \log 0,2 = \log 1 - \log 5 = 0 - \log 5. \] Para calcular \( \log 5 \), usamos a seguinte relação: \( \log 5 = \log \left(\frac{10}{2}\right) = \log 10 - \log 2 = 1 - 0,30 = 0,70 \). Portanto, \[ \log 0,2 = -0,70. \] **c) \( \log 6 \)** Como \( 6 = 2 \cdot 3 \), temos: \[ \log 6 = \log 2 + \log 3 = 0,30 + 0,48 = 0,78. \] **d) \( \log 18 \)** Sabemos que \( 18 = 2 \cdot 9 = 2 \cdot 3^2 \). Assim: \[ \log 18 = \log(2 \cdot 3^2) = \log 2 + 2 \cdot \log 3 = 0,30 + 2 \cdot 0,48 = 0,30 + 0,96 = 1,26. \] **e) \( \log 5 \)** Já calculado acima, \( \log 5 = 0,70 \). **f) \( \log 0,003 \)** Sabemos que \( 0,003 = \frac{3}{1000} = \frac{3}{10^3} \). Assim, \[ \log 0,003 = \log 3 - \log 1000 = \log 3 - 3 \cdot \log 10 = 0,48 - 3 \cdot 1 = 0,48 - 3 = -2,52. \] **g) \( \log 1,08 \)** Sabemos que \( 1,08 = \frac{108}{100} = \frac{2 \cdot 3^3}{10^2} \). Assim, \[ \log 1,08 = \log(2 \cdot 3^3) - 2 \cdot \log 10 = \left( \log 2 + 3 \cdot \log 3 \right) - 2 = (0,30 + 3 \cdot 0,48) - 2 = (0,30 + 1,44) - 2 = 1,74 - 2 = -0,26. \] Resumindo: - \( \log 16 = 1,20 \) - \( \log 0,2 = -0,70 \) - \( \log 6 = 0,78 \) - \( \log 18 = 1,26 \) - \( \log 5 = 0,70 \) - \( \log 0,003 = -2,52 \) - \( \log 1,08 = -0,26 \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy