Question
Jika \( f(x)=\tan \left(3 x^{2}+8\right) \) maka nilai dari \( f^{\prime}(x)= \). A. \( 6 \operatorname{Sec}^{2}\left(3 x^{2}+8\right) \) B. \( 3 \sec ^{2}\left(3 x^{2}+8\right) \) C. \( 3 x \sec ^{2}\left(3 x^{2}+8\right) \) D. \( 3 x \tan ^{2}\left(3 x^{2}+8\right) \) E. \( \quad 6 x \sec ^{2}\left(3 x^{2}+8\right) \)
Ask by Ellis Lambert. in Indonesia
Nov 25,2024
Real Tutor Solution
Tutor-Verified Answer
Answer
\( f^{\prime}(x) = 6 x \sec^{2}(3 x^{2}+8) \)
Therefore, the correct answer is E. \( 6 x \sec^{2}(3 x^{2}+8) \).
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock
Reviewed and approved by the UpStudy tutoring team
Like
The Deep Dive
Mari kita hitung turunan dari fungsi \( f(x) = \tan(3x^2 + 8) \) menggunakan aturan rantai. 1. Turunan dari \(\tan(u)\) adalah \(\sec^2(u) \cdot u'\), di mana \(u = 3x^2 + 8\). 2. Kita perlu menghitung \(u' = \frac{d}{dx}(3x^2 + 8) = 6x\). Dengan demikian: \[ f'(x) = \sec^2(3x^2 + 8) \cdot 6x = 6x \sec^2(3x^2 + 8) \] Jadi, nilai dari \( f^{\prime}(x) \) adalah \( E. \, 6 x \sec^{2}\left(3 x^{2}+8\right) \).