Question
upstudy study bank question image url

6. The indefinite integral \( \int 4 x \sin (2 x) \mathrm{d} x \) equals

Ask by Tucker John. in the United States
Dec 10,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

\( -2x\cos(2x) + \sin(2x) + C \)

Solution

Calculate the integral \( \int 4x \sin(2x) dx \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int 4x\sin\left(2x\right) dx\) - step1: Use properties of integrals: \(4\times \int x\sin\left(2x\right) dx\) - step2: Prepare for integration by parts: \(\begin{align}&u=x\\&dv=\sin\left(2x\right)dx\end{align}\) - step3: Calculate the derivative: \(\begin{align}&du=dx\\&dv=\sin\left(2x\right)dx\end{align}\) - step4: Evaluate the integral: \(\begin{align}&du=dx\\&v=-\frac{1}{2}\cos\left(2x\right)\end{align}\) - step5: Substitute the values into formula: \(4\left(x\left(-\frac{1}{2}\cos\left(2x\right)\right)-\int 1\times \left(-\frac{1}{2}\cos\left(2x\right)\right) dx\right)\) - step6: Calculate: \(4\left(-\frac{1}{2}x\cos\left(2x\right)-\int -\frac{1}{2}\cos\left(2x\right) dx\right)\) - step7: Calculate: \(-2x\cos\left(2x\right)-4\times \int -\frac{1}{2}\cos\left(2x\right) dx\) - step8: Evaluate the integral: \(-2x\cos\left(2x\right)+\sin\left(2x\right)\) - step9: Add the constant of integral C: \(-2x\cos\left(2x\right)+\sin\left(2x\right) + C, C \in \mathbb{R}\) The indefinite integral \( \int 4x \sin(2x) dx \) equals \( -2x\cos(2x) + \sin(2x) + C \), where \( C \) is an arbitrary constant.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve \( \int 4 x \sin (2 x) \mathrm{d} x \), we can use integration by parts. Let \( u = 4 x \) and \( dv = \sin(2x) \, \mathrm{d}x \). Then, we find \( du = 4 \, \mathrm{d}x \) and \( v = -\frac{1}{2} \cos(2x) \) (since \( \int \sin(ax) \, \mathrm{d}x = -\frac{1}{a} \cos(ax) + C \)). Using the integration by parts formula \(\int u \, dv = uv - \int v \, du\), we have: \[ \int 4x \sin(2x) \mathrm{d} x = -2x \cos(2x) - \int -2\cos(2x) \cdot 4 \mathrm{d} x = -2x \cos(2x) + 8 \int \cos(2x) \mathrm{d} x \] Now we calculate \( \int \cos(2x) \mathrm{d} x = \frac{1}{2} \sin(2x) + C \). Substituting this back into our expression gives: \[ \int 4x \sin(2x) \mathrm{d} x = -2x \cos(2x) + 8 \left( \frac{1}{2} \sin(2x) \right) + C \] \[ = -2x \cos(2x) + 4 \sin(2x) + C \] Thus, the final answer is: \[ \int 4x \sin(2x) \mathrm{d} x = -2x \cos(2x) + 4 \sin(2x) + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy