6. The indefinite integral \( \int 4 x \sin (2 x) \mathrm{d} x \) equals
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To solve \( \int 4 x \sin (2 x) \mathrm{d} x \), we can use integration by parts. Let \( u = 4 x \) and \( dv = \sin(2x) \, \mathrm{d}x \). Then, we find \( du = 4 \, \mathrm{d}x \) and \( v = -\frac{1}{2} \cos(2x) \) (since \( \int \sin(ax) \, \mathrm{d}x = -\frac{1}{a} \cos(ax) + C \)). Using the integration by parts formula \(\int u \, dv = uv - \int v \, du\), we have: \[ \int 4x \sin(2x) \mathrm{d} x = -2x \cos(2x) - \int -2\cos(2x) \cdot 4 \mathrm{d} x = -2x \cos(2x) + 8 \int \cos(2x) \mathrm{d} x \] Now we calculate \( \int \cos(2x) \mathrm{d} x = \frac{1}{2} \sin(2x) + C \). Substituting this back into our expression gives: \[ \int 4x \sin(2x) \mathrm{d} x = -2x \cos(2x) + 8 \left( \frac{1}{2} \sin(2x) \right) + C \] \[ = -2x \cos(2x) + 4 \sin(2x) + C \] Thus, the final answer is: \[ \int 4x \sin(2x) \mathrm{d} x = -2x \cos(2x) + 4 \sin(2x) + C \]