Question
upstudy study bank question image url

Find \( \cot (\theta) \) if \( \sin (\theta)=\frac{\sigma}{13} \) and \( \theta \) terminates in QI. Answer exactly. \( \cot (\theta)=\square \)

Ask by Schultz Norton. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \cot(\theta) = \frac{\sqrt{169 - \sigma^2}}{\sigma} \)

Solution

To find \( \cot(\theta) \) given that \( \sin(\theta) = \frac{\sigma}{13} \) and that \( \theta \) is in the first quadrant (QI), we can follow these steps: 1. **Use the Pythagorean identity**: We know that \[ \sin^2(\theta) + \cos^2(\theta) = 1. \] Substituting \( \sin(\theta) \) into the identity gives us: \[ \left(\frac{\sigma}{13}\right)^2 + \cos^2(\theta) = 1. \] 2. **Calculate \( \cos(\theta) \)**: \[ \cos^2(\theta) = 1 - \left(\frac{\sigma}{13}\right)^2. \] Simplifying this, we have: \[ \cos^2(\theta) = 1 - \frac{\sigma^2}{169} = \frac{169 - \sigma^2}{169}. \] Therefore, \[ \cos(\theta) = \sqrt{\frac{169 - \sigma^2}{169}} = \frac{\sqrt{169 - \sigma^2}}{13}. \] Since \( \theta \) is in the first quadrant, \( \cos(\theta) \) is positive. 3. **Calculate \( \cot(\theta) \)**: The cotangent function is defined as: \[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}. \] Substituting the values we found: \[ \cot(\theta) = \frac{\frac{\sqrt{169 - \sigma^2}}{13}}{\frac{\sigma}{13}} = \frac{\sqrt{169 - \sigma^2}}{\sigma}. \] Thus, the exact value of \( \cot(\theta) \) is: \[ \cot(\theta) = \frac{\sqrt{169 - \sigma^2}}{\sigma}. \] So, the final answer is: \[ \cot(\theta) = \frac{\sqrt{169 - \sigma^2}}{\sigma}. \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find \( \cot (\theta) \) given \( \sin (\theta) = \frac{\sigma}{13} \), we can use the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] Substituting \( \sin(\theta) \): \[ \left( \frac{\sigma}{13} \right)^2 + \cos^2(\theta) = 1 \] This expands to: \[ \frac{\sigma^2}{169} + \cos^2(\theta) = 1 \] Rearranging gives: \[ \cos^2(\theta) = 1 - \frac{\sigma^2}{169} \] Now, let's find \( \cos(\theta) \). Since \( \theta \) terminates in Quadrant I, \( \cos(\theta) \) is positive: \[ \cos(\theta) = \sqrt{1 - \frac{\sigma^2}{169}} = \sqrt{\frac{169 - \sigma^2}{169}} = \frac{\sqrt{169 - \sigma^2}}{13} \] Next, we can find \( \cot(\theta) \): \[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{\frac{\sqrt{169 - \sigma^2}}{13}}{\frac{\sigma}{13}} = \frac{\sqrt{169 - \sigma^2}}{\sigma} \] Thus, the exact expression for \( \cot(\theta) \) is: \[ \cot(\theta) = \frac{\sqrt{169 - \sigma^2}}{\sigma} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy