Question
Simplify. \[ \left(\frac{4 p^{2}}{3 p^{-5}}\right)^{2} \] Write your answer using only positive exponents,
Ask by Lang Huff. in the United States
Jan 21,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\[ \frac{16\, p^{14}}{9} \]
Solution
\[ \frac{16\, p^{14}}{9} \]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To simplify the expression \(\left(\frac{4 p^{2}}{3 p^{-5}}\right)^{2}\), we first simplify the inner fraction. The expression inside the parentheses becomes: \[ \frac{4 p^{2}}{3 p^{-5}} = \frac{4}{3} \cdot \frac{p^{2}}{p^{-5}} = \frac{4}{3} \cdot p^{2 - (-5)} = \frac{4}{3} \cdot p^{2 + 5} = \frac{4}{3} \cdot p^{7}. \] Now, we need to square this result: \[ \left(\frac{4}{3} \cdot p^{7}\right)^{2} = \left(\frac{4}{3}\right)^{2} \cdot (p^{7})^{2} = \frac{16}{9} \cdot p^{14}. \] Thus, the simplified expression is: \[ \boxed{\frac{16 p^{14}}{9}}. \]