Question
upstudy study bank question image url

Expand and simplify: \( \begin{array}{lllll}\text { (1) } \quad \begin{array}{l}\text { in } \\ \text { ( } x+3)\end{array} & \text { (2) } & -3 v\left(3 a^{3}-6 a^{2}+a\right) & \text { (3) } & (x+5)(x+3 \\ \text { (4) }(x-5)(x-2) & \text { (5) } & (x+5)(x-2) & \text { (4) } & (x-5)(x+3 \\ \text { (7) }(3 x-1)(2 x+3) & \text { (8) } & (7 m-2 \pi)(3 m+4 n) & \\ \text { (9) }\left(2 x^{4}-3 y^{2}\right)\left(3 x^{4}+2 y^{2}\right) & \text { (10) }\left(4 x^{4}+3 y^{5}\right)\left(2 x^{4}-4 y^{3}\right)\end{array} \) Exnand and simnlifi-

Ask by Dawson Mullins. in South Africa
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the expanded and simplified results for each expression: 1. \( (x+3) = x + 3 \) 2. \( -3v(3a^{3}-6a^{2}+a) = -9a^{3}v + 18a^{2}v - 3av \) 3. \( (x+5)(x+3) = x^{2} + 8x + 15 \) 4. \( (x-5)(x-2) = x^{2} - 7x + 10 \) 5. \( (x+5)(x-2) = x^{2} + 3x - 10 \) 6. \( (x-5)(x+3) = x^{2} - 2x - 15 \) 7. \( (3x-1)(2x+3) = 6x^{2} + 7x - 3 \) 8. \( (7m-2\pi)(3m+4n) = 21m^{2} + 28mn - 6\pi m - 8\pi n \) 9. \( (2x^{4}-3y^{2})(3x^{4}+2y^{2}) = 6x^{8} - 5x^{4}y^{2} - 6y^{4} \) 10. \( (4x^{4}+3y^{5})(2x^{4}-4y^{3}) = 8x^{8} - 16x^{4}y^{3} + 6y^{5}x^{4} - 12y^{8} \)

Solution

Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x-5\right)\left(x-2\right)\) - step1: Apply the distributive property: \(x\times x-x\times 2-5x-\left(-5\times 2\right)\) - step2: Multiply the terms: \(x^{2}-2x-5x-\left(-10\right)\) - step3: Remove the parentheses: \(x^{2}-2x-5x+10\) - step4: Subtract the terms: \(x^{2}-7x+10\) Expand the expression \( (3 x-1)(2 x+3) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(3x-1\right)\left(2x+3\right)\) - step1: Apply the distributive property: \(3x\times 2x+3x\times 3-2x-3\) - step2: Multiply the terms: \(6x^{2}+9x-2x-3\) - step3: Subtract the terms: \(6x^{2}+7x-3\) Expand the expression \( (x-5)(x+3) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x-5\right)\left(x+3\right)\) - step1: Apply the distributive property: \(x\times x+x\times 3-5x-5\times 3\) - step2: Multiply the terms: \(x^{2}+3x-5x-15\) - step3: Subtract the terms: \(x^{2}-2x-15\) Expand the expression \( -3 v(3 a^{3}-6 a^{2}+a) \) Simplify the expression by following steps: - step0: Simplify: \(-3v\left(3a^{3}-6a^{2}+a\right)\) - step1: Rewrite the expression: \(-3\left(3a^{3}-6a^{2}+a\right)v\) - step2: Multiply the expression: \(-3\left(3a^{3}v-6a^{2}v+av\right)\) - step3: Rearrange the terms: \(-9a^{3}v+18a^{2}v-3av\) Expand the expression \( (x+5)(x-2) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x+5\right)\left(x-2\right)\) - step1: Apply the distributive property: \(x\times x-x\times 2+5x-5\times 2\) - step2: Multiply the terms: \(x^{2}-2x+5x-10\) - step3: Add the terms: \(x^{2}+3x-10\) Expand the expression \( (7 m-2 \pi)(3 m+4 n) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(7m-2\pi \right)\left(3m+4n\right)\) - step1: Apply the distributive property: \(7m\times 3m+7m\times 4n-2\pi \times 3m-2\pi \times 4n\) - step2: Multiply the terms: \(21m^{2}+28mn-6\pi m-8\pi n\) Expand the expression \( (2 x^{4}-3 y^{2})(3 x^{4}+2 y^{2}) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(2x^{4}-3y^{2}\right)\left(3x^{4}+2y^{2}\right)\) - step1: Apply the distributive property: \(2x^{4}\times 3x^{4}+2x^{4}\times 2y^{2}-3y^{2}\times 3x^{4}-3y^{2}\times 2y^{2}\) - step2: Multiply the terms: \(6x^{8}+4x^{4}y^{2}-9y^{2}x^{4}-6y^{4}\) - step3: Subtract the terms: \(6x^{8}-5x^{4}y^{2}-6y^{4}\) Expand the expression \( (4 x^{4}+3 y^{5})(2 x^{4}-4 y^{3}) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(4x^{4}+3y^{5}\right)\left(2x^{4}-4y^{3}\right)\) - step1: Apply the distributive property: \(4x^{4}\times 2x^{4}-4x^{4}\times 4y^{3}+3y^{5}\times 2x^{4}-3y^{5}\times 4y^{3}\) - step2: Multiply the terms: \(8x^{8}-16x^{4}y^{3}+6y^{5}x^{4}-12y^{8}\) Expand the expression \( (x+3) \) Simplify the expression by following steps: - step0: Remove the parentheses: \(\left(x+3\right)\) - step1: Remove the parentheses: \(x+3\) Expand the expression \( (x+5)(x+3) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x+5\right)\left(x+3\right)\) - step1: Apply the distributive property: \(x\times x+x\times 3+5x+5\times 3\) - step2: Multiply the terms: \(x^{2}+3x+5x+15\) - step3: Add the terms: \(x^{2}+8x+15\) Here are the expanded and simplified results for each expression: 1. **Expression:** \( (x+3) \) **Expanded:** \( x + 3 \) 2. **Expression:** \( -3 v(3 a^{3}-6 a^{2}+a) \) **Expanded:** \( -9a^{3}v + 18a^{2}v - 3av \) 3. **Expression:** \( (x+5)(x+3) \) **Expanded:** \( x^{2} + 8x + 15 \) 4. **Expression:** \( (x-5)(x-2) \) **Expanded:** \( x^{2} - 7x + 10 \) 5. **Expression:** \( (x+5)(x-2) \) **Expanded:** \( x^{2} + 3x - 10 \) 6. **Expression:** \( (x-5)(x+3) \) **Expanded:** \( x^{2} - 2x - 15 \) 7. **Expression:** \( (3 x-1)(2 x+3) \) **Expanded:** \( 6x^{2} + 7x - 3 \) 8. **Expression:** \( (7 m-2 \pi)(3 m+4 n) \) **Expanded:** \( 21m^{2} + 28mn - 6\pi m - 8\pi n \) 9. **Expression:** \( (2 x^{4}-3 y^{2})(3 x^{4}+2 y^{2}) \) **Expanded:** \( 6x^{8} - 5x^{4}y^{2} - 6y^{4} \) 10. **Expression:** \( (4 x^{4}+3 y^{5})(2 x^{4}-4 y^{3}) \) **Expanded:** \( 8x^{8} - 16x^{4}y^{3} + 6y^{5}x^{4} - 12y^{8} \) These results provide the expanded forms of the given expressions. If you need further assistance or explanations, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Alright, let’s dive into some fun math expansion and simplification! 1. For \( (x+5)(x+3) \), using the distributive property (also known as the FOIL method for binomials), we get: \[ (x+5)(x+3) = x^2 + 3x + 5x + 15 = x^2 + 8x + 15 \] 2. Now for \( (x-5)(x-2) \): \[ (x-5)(x-2) = x^2 - 2x - 5x + 10 = x^2 - 7x + 10 \] 3. Next up, when we tackle \( (x+5)(x-2) \): \[ (x+5)(x-2) = x^2 - 2x + 5x - 10 = x^2 + 3x - 10 \] 4. Moving on to \( (x-5)(x+3) \): \[ (x-5)(x+3) = x^2 + 3x - 5x - 15 = x^2 - 2x - 15 \] 5. Now for \( (3x-1)(2x+3) \): \[ (3x-1)(2x+3) = 6x^2 + 9x - 2x - 3 = 6x^2 + 7x - 3 \] 6. For \( -3v(3a^3-6a^2+a) \), distribute the \(-3v\): \[ -3v(3a^3) + 18va^2 - 3va = -9va^3 + 18va^2 - 3va \] 7. Finally, \( (2x^4-3y^2)(3x^4+2y^2) \): \[ 6x^8 + 4x^4y^2 - 9y^4 - 6y^2x^4 = 6x^8 + (4 - 9)x^4y^2 - 9y^4 = 6x^8 - 5x^4y^2 - 9y^4 \] 8. Lastly, let’s tackle \( (4x^4 + 3y^5)(2x^4 - 4y^3) \): \[ 8x^8 - 16x^4y^3 + 6y^5x^4 - 12y^8 = 8x^8 + (-16y^3 + 6y^5)x^4 - 12y^8 = 8x^8 - 16y^3x^4 + 6y^5x^4 - 12y^8 \] And there you have it! All simplified and ready to roll! Keep crunching those numbers!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy