Answer
Here are the expanded and simplified results for each expression:
1. \( (x+3) = x + 3 \)
2. \( -3v(3a^{3}-6a^{2}+a) = -9a^{3}v + 18a^{2}v - 3av \)
3. \( (x+5)(x+3) = x^{2} + 8x + 15 \)
4. \( (x-5)(x-2) = x^{2} - 7x + 10 \)
5. \( (x+5)(x-2) = x^{2} + 3x - 10 \)
6. \( (x-5)(x+3) = x^{2} - 2x - 15 \)
7. \( (3x-1)(2x+3) = 6x^{2} + 7x - 3 \)
8. \( (7m-2\pi)(3m+4n) = 21m^{2} + 28mn - 6\pi m - 8\pi n \)
9. \( (2x^{4}-3y^{2})(3x^{4}+2y^{2}) = 6x^{8} - 5x^{4}y^{2} - 6y^{4} \)
10. \( (4x^{4}+3y^{5})(2x^{4}-4y^{3}) = 8x^{8} - 16x^{4}y^{3} + 6y^{5}x^{4} - 12y^{8} \)
Solution
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x-5\right)\left(x-2\right)\)
- step1: Apply the distributive property:
\(x\times x-x\times 2-5x-\left(-5\times 2\right)\)
- step2: Multiply the terms:
\(x^{2}-2x-5x-\left(-10\right)\)
- step3: Remove the parentheses:
\(x^{2}-2x-5x+10\)
- step4: Subtract the terms:
\(x^{2}-7x+10\)
Expand the expression \( (3 x-1)(2 x+3) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(3x-1\right)\left(2x+3\right)\)
- step1: Apply the distributive property:
\(3x\times 2x+3x\times 3-2x-3\)
- step2: Multiply the terms:
\(6x^{2}+9x-2x-3\)
- step3: Subtract the terms:
\(6x^{2}+7x-3\)
Expand the expression \( (x-5)(x+3) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x-5\right)\left(x+3\right)\)
- step1: Apply the distributive property:
\(x\times x+x\times 3-5x-5\times 3\)
- step2: Multiply the terms:
\(x^{2}+3x-5x-15\)
- step3: Subtract the terms:
\(x^{2}-2x-15\)
Expand the expression \( -3 v(3 a^{3}-6 a^{2}+a) \)
Simplify the expression by following steps:
- step0: Simplify:
\(-3v\left(3a^{3}-6a^{2}+a\right)\)
- step1: Rewrite the expression:
\(-3\left(3a^{3}-6a^{2}+a\right)v\)
- step2: Multiply the expression:
\(-3\left(3a^{3}v-6a^{2}v+av\right)\)
- step3: Rearrange the terms:
\(-9a^{3}v+18a^{2}v-3av\)
Expand the expression \( (x+5)(x-2) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x+5\right)\left(x-2\right)\)
- step1: Apply the distributive property:
\(x\times x-x\times 2+5x-5\times 2\)
- step2: Multiply the terms:
\(x^{2}-2x+5x-10\)
- step3: Add the terms:
\(x^{2}+3x-10\)
Expand the expression \( (7 m-2 \pi)(3 m+4 n) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(7m-2\pi \right)\left(3m+4n\right)\)
- step1: Apply the distributive property:
\(7m\times 3m+7m\times 4n-2\pi \times 3m-2\pi \times 4n\)
- step2: Multiply the terms:
\(21m^{2}+28mn-6\pi m-8\pi n\)
Expand the expression \( (2 x^{4}-3 y^{2})(3 x^{4}+2 y^{2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(2x^{4}-3y^{2}\right)\left(3x^{4}+2y^{2}\right)\)
- step1: Apply the distributive property:
\(2x^{4}\times 3x^{4}+2x^{4}\times 2y^{2}-3y^{2}\times 3x^{4}-3y^{2}\times 2y^{2}\)
- step2: Multiply the terms:
\(6x^{8}+4x^{4}y^{2}-9y^{2}x^{4}-6y^{4}\)
- step3: Subtract the terms:
\(6x^{8}-5x^{4}y^{2}-6y^{4}\)
Expand the expression \( (4 x^{4}+3 y^{5})(2 x^{4}-4 y^{3}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(4x^{4}+3y^{5}\right)\left(2x^{4}-4y^{3}\right)\)
- step1: Apply the distributive property:
\(4x^{4}\times 2x^{4}-4x^{4}\times 4y^{3}+3y^{5}\times 2x^{4}-3y^{5}\times 4y^{3}\)
- step2: Multiply the terms:
\(8x^{8}-16x^{4}y^{3}+6y^{5}x^{4}-12y^{8}\)
Expand the expression \( (x+3) \)
Simplify the expression by following steps:
- step0: Remove the parentheses:
\(\left(x+3\right)\)
- step1: Remove the parentheses:
\(x+3\)
Expand the expression \( (x+5)(x+3) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x+5\right)\left(x+3\right)\)
- step1: Apply the distributive property:
\(x\times x+x\times 3+5x+5\times 3\)
- step2: Multiply the terms:
\(x^{2}+3x+5x+15\)
- step3: Add the terms:
\(x^{2}+8x+15\)
Here are the expanded and simplified results for each expression:
1. **Expression:** \( (x+3) \)
**Expanded:** \( x + 3 \)
2. **Expression:** \( -3 v(3 a^{3}-6 a^{2}+a) \)
**Expanded:** \( -9a^{3}v + 18a^{2}v - 3av \)
3. **Expression:** \( (x+5)(x+3) \)
**Expanded:** \( x^{2} + 8x + 15 \)
4. **Expression:** \( (x-5)(x-2) \)
**Expanded:** \( x^{2} - 7x + 10 \)
5. **Expression:** \( (x+5)(x-2) \)
**Expanded:** \( x^{2} + 3x - 10 \)
6. **Expression:** \( (x-5)(x+3) \)
**Expanded:** \( x^{2} - 2x - 15 \)
7. **Expression:** \( (3 x-1)(2 x+3) \)
**Expanded:** \( 6x^{2} + 7x - 3 \)
8. **Expression:** \( (7 m-2 \pi)(3 m+4 n) \)
**Expanded:** \( 21m^{2} + 28mn - 6\pi m - 8\pi n \)
9. **Expression:** \( (2 x^{4}-3 y^{2})(3 x^{4}+2 y^{2}) \)
**Expanded:** \( 6x^{8} - 5x^{4}y^{2} - 6y^{4} \)
10. **Expression:** \( (4 x^{4}+3 y^{5})(2 x^{4}-4 y^{3}) \)
**Expanded:** \( 8x^{8} - 16x^{4}y^{3} + 6y^{5}x^{4} - 12y^{8} \)
These results provide the expanded forms of the given expressions. If you need further assistance or explanations, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution