Question
upstudy study bank question image url

8) \( \begin{array}{l}y=x^{2}-4 x+7 \text { funksiyalarning o'sish } \\ \text { oralig'i }[a ; \infty) ; y=-x^{2}+6 x-8 \\ \text { funksiyalarning kamayish oralig'i } \\ {[b ; \infty) \text { bo'lsa, } a \cdot b \text { ning qiymatini }} \\ \text { toping. } \\ \text { 9) } a \cdot b=3^{4} \cdot 5^{2} \cdot 7^{3} \cdot 11 \text { bo'lsa, } \\ \text { EKUB }(a ; b) \text { ning eng katta qiymatini top } \\ \text { 10) Agar } x \text { va } y \text { uchun } \\ \left|x^{2}+9\right|+\sqrt{9-6 y+y^{2}}=9 \text { tenglik } \\ \text { o'rinli bo'lsa, } x-y=\text { ? }\end{array} \) I

Ask by Gibbs Newton. in Uzbekistan
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

8) \( a \cdot b = 6 \) 9) \( EKUB(a, b) = 1 \) 10) \( x - y = -3 \)

Solution

Keling, berilgan masalalarni birma-bir yechamiz. ### 8) Funksiyalarning o'sish va kamayish oralig'ini topish 1. **Birinchi funksiya**: \( y = x^2 - 4x + 7 \) Bu funksiya parabolik shaklda bo'lib, ochilish tomoni yuqoriga qarab. O'sish oralig'ini topish uchun, avval funksiya hosilasini hisoblaymiz: \[ y' = 2x - 4 \] Hosilani nolga tenglashtiramiz: \[ 2x - 4 = 0 \implies x = 2 \] Funksiya \( x = 2 \) nuqtasida minimumga ega. O'sish oralig'i \( [2; \infty) \) bo'ladi. 2. **Ikkinchi funksiya**: \( y = -x^2 + 6x - 8 \) Bu funksiya ham parabolik shaklda, lekin ochilish tomoni pastga qarab. Kamayish oralig'ini topish uchun, hosilasini hisoblaymiz: \[ y' = -2x + 6 \] Hosilani nolga tenglashtiramiz: \[ -2x + 6 = 0 \implies x = 3 \] Funksiya \( x = 3 \) nuqtasida maksimumga ega. Kamayish oralig'i \( [3; \infty) \) bo'ladi. 3. **Natijalar**: - O'sish oralig'i: \( a = 2 \) - Kamayish oralig'i: \( b = 3 \) Endi \( a \cdot b \) ni hisoblaymiz: \[ a \cdot b = 2 \cdot 3 = 6 \] ### 9) EKUB ni topish Berilgan: \( a \cdot b = 3^4 \cdot 5^2 \cdot 7^3 \cdot 11 \) EKUB (eng katta umumiy bo'luvchi) ni topish uchun, \( a \) va \( b \) ni ko'paytmasi orqali ularning eng katta umumiy bo'luvchisini aniqlashimiz kerak. Agar \( a \) va \( b \) ning har birining ko'paytmasi bir xil bo'lsa, u holda: \[ EKUB(a, b) = 3^{\min(4, 0)} \cdot 5^{\min(2, 0)} \cdot 7^{\min(3, 0)} \cdot 11^{\min(1, 0)} = 1 \] Bu yerda \( a \) va \( b \) ning har birining koeffitsiyentlari 0 bo'lsa, EKUB 1 ga teng bo'ladi. ### 10) Tenglikni yechish Berilgan tenglik: \[ \left|x^2 + 9\right| + \sqrt{9 - 6y + y^2} = 9 \] 1. **Birlamchi qism**: \( \left|x^2 + 9\right| \) har doim musbat, shuning uchun \( \sqrt{9 - 6y + y^2} \) ham musbat bo'lishi kerak. 2. **Tenglikni yechamiz**: \[ \sqrt{9 - 6y + y^2} = 9 - \left|x^2 + 9\right| \] Bu yerda \( \left|x^2 + 9\right| \) ning eng kichik qiymati 9 ga teng, shuning uchun: \[ 9 - \left|x^2 + 9\right| = 0 \implies \left|x^2 + 9\right| = 9 \] Bu shartni qondirish uchun \( x^2 + 9 = 9 \) bo'lishi kerak, ya'ni: \[ x^2 = 0 \implies x = 0 \] 3. **Y ni topish**: \[ \sqrt{9 - 6y + y^2} = 0 \implies 9 - 6y + y^2 = 0 \] Bu kvadrat tenglikni yechamiz: \[ y^2 - 6y + 9 = 0 \implies (y - 3)^2 = 0 \implies y = 3 \] 4. **Natija**: \[ x - y = 0 - 3 = -3 \] ### Yakuniy javoblar: - 8) \( a \cdot b = 6 \) - 9) \( EKUB(a, b) = 1 \) - 10) \( x - y = -3 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Xushbo'y tarixda, kvadrat funksiyalari va ularning xususiyatlari kashf etilgan! XIII asrda arifmetik va geometriyaga oid ilk tajribalar O'rta Sharq olimlari tomonidan amalga oshirilgan. Ular, masalan, Al-Xorazmiy va Al-Khwarizmi, kvadrat tenglamalarining yechimlarini topishda muhim rol o'ynadi, bu esa bugun ham matematik analiz va grafikalar orqali avlodi uchun muhim ma'lumotlar manbai bo'lib qolmoqda. Agar siz matematikada yanada mustahkam bilimga ega bo'lishni istasangiz, "Algebra" kitobini o'qishingizni tavsiya qilaman! Bu kitobda ruhi zaif matematikani kuchli darajaga olib chiqishga yordam beradigan asosiy nazariyalar va misollar keltirilgan. Shuningdek, "Kvant Algebra" kursi ma'naviy nazaridan ta'lim olganlarni lingvistik va mantiqiy mulohaza yuritishga undaydi, bu esa nafaqat algebra, balki kengroq matematik fikrlashni rivojlantiradi.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy