Question
332. a) \( \operatorname{tg} \alpha=\frac{5}{4} \) bolanda, \( \frac{\sin \alpha+\cos \alpha}{\sin \alpha-\cos \alpha} \)
Ask by Davey Ball. in Turkmenistan
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( \frac{\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha} = 9 \)
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Unlock
Reviewed and approved by the UpStudy tutoring team
Like
The Deep Dive
Знаючи, що \( \operatorname{tg} \alpha = \frac{5}{4} \), можна взяти \( \sin \alpha = 5k \) та \( \cos \alpha = 4k \) для деякого \( k \). Знайдемо \( \sin \alpha + \cos \alpha \) та \( \sin \alpha - \cos \alpha \): \[ \sin \alpha + \cos \alpha = 5k + 4k = 9k \] \[ \sin \alpha - \cos \alpha = 5k - 4k = k \] Тепер знайдемо відношення: \[ \frac{\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha} = \frac{9k}{k} = 9 \] Отже, відповіді буде 9.