Question
upstudy study bank question image url

EXERCISE 3 1. Determine the derivatives of the following at any point by using first principles. \( \begin{array}{lll}\text { (a) } f(x)=x & \text { (b) } f(x)=2 x & \text { (c) } g(x)=-3 x \\ \text { (d) } f(x)=4 & \text { (e) } f(x)=5 & \text { (f) } g(x)=-7 \\ \text { (g) } f(x)=x^{2} & \text { (h) } f(x)=2 x^{2} & \text { (i) } g(x)=-4 x^{2} \\ \text { (j) } f(x)=1+x^{2} & \text { (k) } f(x)=3-x^{2} & \text { (l) } g(x)=x^{3} \\ \text { (m) } f(x)=\frac{2}{x} & \text { (n) } g(x)=-\frac{3}{x} & \end{array} \) Consider \( f: x \rightarrow x^{2}-x \)

Ask by Wheeler Powell. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the derivatives of the given functions using first principles: 1. **(a) \( f(x) = x \)** - \( f'(x) = 1 \) 2. **(b) \( f(x) = 2x \)** - \( f'(x) = 2 \) 3. **(c) \( g(x) = -3x \)** - \( g'(x) = -3 \) 4. **(d) \( f(x) = 4 \)** - \( f'(x) = 0 \) 5. **(e) \( f(x) = 5 \)** - \( f'(x) = 0 \) 6. **(f) \( g(x) = -7 \)** - \( g'(x) = 0 \) 7. **(g) \( f(x) = x^2 \)** - \( f'(x) = 2x \) 8. **(h) \( f(x) = 2x^2 \)** - \( f'(x) = 4x \) 9. **(i) \( g(x) = -4x^2 \)** - \( g'(x) = -8x \) 10. **(j) \( f(x) = 1 + x^2 \)** - \( f'(x) = 2x \) 11. **(k) \( f(x) = 3 - x^2 \)** - \( f'(x) = -2x \) 12. **(l) \( g(x) = x^3 \)** - \( g'(x) = 3x^2 \) 13. **(m) \( f(x) = \frac{2}{x} \)** - \( f'(x) = -\frac{2}{x^2} \) 14. **(n) \( g(x) = -\frac{3}{x} \)** - \( g'(x) = \frac{3}{x^2} \) 15. **\( f(x) = x^2 - x \)** - \( f'(x) = 2x - 1 \) These derivatives are calculated using the first principles definition of the derivative.

Solution

Sure! Let's determine the derivatives of each given function using first principles. The **first principles** definition of the derivative is: \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] We'll apply this definition to each function from **(a)** to **(n)**. --- ### **(a) \( f(x) = x \)** \[ f'(x) = \lim_{h \to 0} \frac{(x + h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1 \] **Derivative:** \( f'(x) = 1 \) --- ### **(b) \( f(x) = 2x \)** \[ f'(x) = \lim_{h \to 0} \frac{2(x + h) - 2x}{h} = \lim_{h \to 0} \frac{2h}{h} = 2 \] **Derivative:** \( f'(x) = 2 \) --- ### **(c) \( g(x) = -3x \)** \[ g'(x) = \lim_{h \to 0} \frac{-3(x + h) - (-3x)}{h} = \lim_{h \to 0} \frac{-3h}{h} = -3 \] **Derivative:** \( g'(x) = -3 \) --- ### **(d) \( f(x) = 4 \)** \[ f'(x) = \lim_{h \to 0} \frac{4 - 4}{h} = \lim_{h \to 0} \frac{0}{h} = 0 \] **Derivative:** \( f'(x) = 0 \) --- ### **(e) \( f(x) = 5 \)** \[ f'(x) = \lim_{h \to 0} \frac{5 - 5}{h} = \lim_{h \to 0} \frac{0}{h} = 0 \] **Derivative:** \( f'(x) = 0 \) --- ### **(f) \( g(x) = -7 \)** \[ g'(x) = \lim_{h \to 0} \frac{-7 - (-7)}{h} = \lim_{h \to 0} \frac{0}{h} = 0 \] **Derivative:** \( g'(x) = 0 \) --- ### **(g) \( f(x) = x^2 \)** \[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x \] **Derivative:** \( f'(x) = 2x \) --- ### **(h) \( f(x) = 2x^2 \)** \[ f'(x) = \lim_{h \to 0} \frac{2(x + h)^2 - 2x^2}{h} = \lim_{h \to 0} \frac{4xh + 2h^2}{h} = \lim_{h \to 0} (4x + 2h) = 4x \] **Derivative:** \( f'(x) = 4x \) --- ### **(i) \( g(x) = -4x^2 \)** \[ g'(x) = \lim_{h \to 0} \frac{-4(x + h)^2 - (-4x^2)}{h} = \lim_{h \to 0} \frac{-8xh -4h^2}{h} = \lim_{h \to 0} (-8x -4h) = -8x \] **Derivative:** \( g'(x) = -8x \) --- ### **(j) \( f(x) = 1 + x^2 \)** \[ f'(x) = \lim_{h \to 0} \frac{1 + (x + h)^2 - (1 + x^2)}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x \] **Derivative:** \( f'(x) = 2x \) --- ### **(k) \( f(x) = 3 - x^2 \)** \[ f'(x) = \lim_{h \to 0} \frac{3 - (x + h)^2 - (3 - x^2)}{h} = \lim_{h \to 0} \frac{-2xh - h^2}{h} = \lim_{h \to 0} (-2x - h) = -2x \] **Derivative:** \( f'(x) = -2x \) --- ### **(l) \( g(x) = x^3 \)** \[ g'(x) = \lim_{h \to 0} \frac{(x + h)^3 - x^3}{h} = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} = \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2 \] **Derivative:** \( g'(x) = 3x^2 \) --- ### **(m) \( f(x) = \frac{2}{x} \)** First, rewrite \( f(x) \) as \( f(x) = 2x^{-1} \). \[ f'(x) = \lim_{h \to 0} \frac{\frac{2}{x + h} - \frac{2}{x}}{h} = \lim_{h \to 0} \frac{2x - 2(x + h)}{h(x)(x + h)} = \lim_{h \to 0} \frac{-2h}{h(x)(x + h)} = \lim_{h \to 0} \frac{-2}{x(x + h)} = -\frac{2}{x^2} \] **Derivative:** \( f'(x) = -\frac{2}{x^2} \) --- ### **(n) \( g(x) = -\frac{3}{x} \)** First, rewrite \( g(x) \) as \( g(x) = -3x^{-1} \). \[ g'(x) = \lim_{h \to 0} \frac{-\frac{3}{x + h} - \left(-\frac{3}{x}\right)}{h} = \lim_{h \to 0} \frac{-3x + 3(x + h)}{h(x)(x + h)} = \lim_{h \to 0} \frac{3h}{h(x)(x + h)} = \lim_{h \to 0} \frac{3}{x(x + h)} = \frac{3}{x^2} \] **Derivative:** \( g'(x) = \frac{3}{x^2} \) --- ### **Additional Consideration: \( f(x) = x^2 - x \)** Although you mentioned "Consider \( f: x \rightarrow x^2 - x \)", let's determine its derivative using first principles. \[ f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - (x + h) - (x^2 - x)}{h} \] \[ = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x - h - x^2 + x}{h} \] \[ = \lim_{h \to 0} \frac{2xh + h^2 - h}{h} \] \[ = \lim_{h \to 0} (2x + h - 1) = 2x - 1 \] **Derivative:** \( f'(x) = 2x - 1 \) --- ### **Summary of Derivatives** | **Function** | **Derivative** \( f'(x) \) | |------------------------|----------------------------------| | \( f(x) = x \) | \( 1 \) | | \( f(x) = 2x \) | \( 2 \) | | \( g(x) = -3x \) | \( -3 \) | | \( f(x) = 4 \) | \( 0 \) | | \( f(x) = 5 \) | \( 0 \) | | \( g(x) = -7 \) | \( 0 \) | | \( f(x) = x^2 \) | \( 2x \) | | \( f(x) = 2x^2 \) | \( 4x \) | | \( g(x) = -4x^2 \) | \( -8x \) | | \( f(x) = 1 + x^2 \) | \( 2x \) | | \( f(x) = 3 - x^2 \) | \( -2x \) | | \( g(x) = x^3 \) | \( 3x^2 \) | | \( f(x) = \frac{2}{x} \)| \( -\frac{2}{x^2} \) | | \( g(x) = -\frac{3}{x} \)| \( \frac{3}{x^2} \) | | \( f(x) = x^2 - x \) | \( 2x - 1 \) | --- Feel free to ask if you need further explanations or assistance with any of these derivatives!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the derivative of the function \( f(x) = x^2 - x \) using first principles, we start with the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] First, we compute \( f(x+h) \): \[ f(x+h) = (x+h)^2 - (x+h) = x^2 + 2xh + h^2 - x - h \] Now, subtract \( f(x) \): \[ f(x+h) - f(x) = (x^2 + 2xh + h^2 - x - h) - (x^2 - x) = 2xh + h^2 - h \] Next, we place this into our derivative formula: \[ f'(x) = \lim_{h \to 0} \frac{2xh + h^2 - h}{h} \] We can simplify the fraction: \[ f'(x) = \lim_{h \to 0} \left(2x + h - 1\right) \] As \( h \) approaches 0, we have: \[ f'(x) = 2x - 1 \] So, the derivative \( f'(x) \) of the function \( f(x) = x^2 - x \) is \( 2x - 1 \). Now, let's derive the first principles for the various functions you've listed: - For \( f(x) = x \), the derivative is \( f'(x) = 1 \). - For \( f(x) = 2x \), the derivative is \( f'(x) = 2 \). - For \( g(x) = -3x \), the derivative is \( g'(x) = -3 \). - For constant functions like \( f(x) = 4 \) or \( f(x) = 5 \), the derivatives are \( 0 \). - For \( g(x) = -7 \), the result is again \( 0 \). - For \( f(x) = x^2 \), the derivative is \( f'(x) = 2x \). - For \( f(x) = 2x^2 \), the derivative is \( f'(x) = 4x \). - For \( g(x) = -4x^2 \), the derivative is \( g'(x) = -8x \). - For \( f(x) = 1 + x^2 \), the derivative is \( f'(x) = 2x \). - For \( f(x) = 3 - x^2 \), the derivative is \( f'(x) = -2x \). - For \( g(x) = x^3 \), the derivative is \( g'(x) = 3x^2 \). - For \( f(x) = \frac{2}{x} \), the derivative is \( f'(x) = -\frac{2}{x^2} \). - For \( g(x) = -\frac{3}{x} \), the derivative is \( g'(x) = \frac{3}{x^2} \). These derivatives summarize the slopes of each function at any point \( x \)!

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy