Answer
Here are the derivatives of the given functions using first principles:
1. **(a) \( f(x) = x \)**
- \( f'(x) = 1 \)
2. **(b) \( f(x) = 2x \)**
- \( f'(x) = 2 \)
3. **(c) \( g(x) = -3x \)**
- \( g'(x) = -3 \)
4. **(d) \( f(x) = 4 \)**
- \( f'(x) = 0 \)
5. **(e) \( f(x) = 5 \)**
- \( f'(x) = 0 \)
6. **(f) \( g(x) = -7 \)**
- \( g'(x) = 0 \)
7. **(g) \( f(x) = x^2 \)**
- \( f'(x) = 2x \)
8. **(h) \( f(x) = 2x^2 \)**
- \( f'(x) = 4x \)
9. **(i) \( g(x) = -4x^2 \)**
- \( g'(x) = -8x \)
10. **(j) \( f(x) = 1 + x^2 \)**
- \( f'(x) = 2x \)
11. **(k) \( f(x) = 3 - x^2 \)**
- \( f'(x) = -2x \)
12. **(l) \( g(x) = x^3 \)**
- \( g'(x) = 3x^2 \)
13. **(m) \( f(x) = \frac{2}{x} \)**
- \( f'(x) = -\frac{2}{x^2} \)
14. **(n) \( g(x) = -\frac{3}{x} \)**
- \( g'(x) = \frac{3}{x^2} \)
15. **\( f(x) = x^2 - x \)**
- \( f'(x) = 2x - 1 \)
These derivatives are calculated using the first principles definition of the derivative.
Solution
Sure! Let's determine the derivatives of each given function using first principles. The **first principles** definition of the derivative is:
\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]
We'll apply this definition to each function from **(a)** to **(n)**.
---
### **(a) \( f(x) = x \)**
\[
f'(x) = \lim_{h \to 0} \frac{(x + h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1
\]
**Derivative:** \( f'(x) = 1 \)
---
### **(b) \( f(x) = 2x \)**
\[
f'(x) = \lim_{h \to 0} \frac{2(x + h) - 2x}{h} = \lim_{h \to 0} \frac{2h}{h} = 2
\]
**Derivative:** \( f'(x) = 2 \)
---
### **(c) \( g(x) = -3x \)**
\[
g'(x) = \lim_{h \to 0} \frac{-3(x + h) - (-3x)}{h} = \lim_{h \to 0} \frac{-3h}{h} = -3
\]
**Derivative:** \( g'(x) = -3 \)
---
### **(d) \( f(x) = 4 \)**
\[
f'(x) = \lim_{h \to 0} \frac{4 - 4}{h} = \lim_{h \to 0} \frac{0}{h} = 0
\]
**Derivative:** \( f'(x) = 0 \)
---
### **(e) \( f(x) = 5 \)**
\[
f'(x) = \lim_{h \to 0} \frac{5 - 5}{h} = \lim_{h \to 0} \frac{0}{h} = 0
\]
**Derivative:** \( f'(x) = 0 \)
---
### **(f) \( g(x) = -7 \)**
\[
g'(x) = \lim_{h \to 0} \frac{-7 - (-7)}{h} = \lim_{h \to 0} \frac{0}{h} = 0
\]
**Derivative:** \( g'(x) = 0 \)
---
### **(g) \( f(x) = x^2 \)**
\[
f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x
\]
**Derivative:** \( f'(x) = 2x \)
---
### **(h) \( f(x) = 2x^2 \)**
\[
f'(x) = \lim_{h \to 0} \frac{2(x + h)^2 - 2x^2}{h} = \lim_{h \to 0} \frac{4xh + 2h^2}{h} = \lim_{h \to 0} (4x + 2h) = 4x
\]
**Derivative:** \( f'(x) = 4x \)
---
### **(i) \( g(x) = -4x^2 \)**
\[
g'(x) = \lim_{h \to 0} \frac{-4(x + h)^2 - (-4x^2)}{h} = \lim_{h \to 0} \frac{-8xh -4h^2}{h} = \lim_{h \to 0} (-8x -4h) = -8x
\]
**Derivative:** \( g'(x) = -8x \)
---
### **(j) \( f(x) = 1 + x^2 \)**
\[
f'(x) = \lim_{h \to 0} \frac{1 + (x + h)^2 - (1 + x^2)}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x
\]
**Derivative:** \( f'(x) = 2x \)
---
### **(k) \( f(x) = 3 - x^2 \)**
\[
f'(x) = \lim_{h \to 0} \frac{3 - (x + h)^2 - (3 - x^2)}{h} = \lim_{h \to 0} \frac{-2xh - h^2}{h} = \lim_{h \to 0} (-2x - h) = -2x
\]
**Derivative:** \( f'(x) = -2x \)
---
### **(l) \( g(x) = x^3 \)**
\[
g'(x) = \lim_{h \to 0} \frac{(x + h)^3 - x^3}{h} = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} = \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2
\]
**Derivative:** \( g'(x) = 3x^2 \)
---
### **(m) \( f(x) = \frac{2}{x} \)**
First, rewrite \( f(x) \) as \( f(x) = 2x^{-1} \).
\[
f'(x) = \lim_{h \to 0} \frac{\frac{2}{x + h} - \frac{2}{x}}{h} = \lim_{h \to 0} \frac{2x - 2(x + h)}{h(x)(x + h)} = \lim_{h \to 0} \frac{-2h}{h(x)(x + h)} = \lim_{h \to 0} \frac{-2}{x(x + h)} = -\frac{2}{x^2}
\]
**Derivative:** \( f'(x) = -\frac{2}{x^2} \)
---
### **(n) \( g(x) = -\frac{3}{x} \)**
First, rewrite \( g(x) \) as \( g(x) = -3x^{-1} \).
\[
g'(x) = \lim_{h \to 0} \frac{-\frac{3}{x + h} - \left(-\frac{3}{x}\right)}{h} = \lim_{h \to 0} \frac{-3x + 3(x + h)}{h(x)(x + h)} = \lim_{h \to 0} \frac{3h}{h(x)(x + h)} = \lim_{h \to 0} \frac{3}{x(x + h)} = \frac{3}{x^2}
\]
**Derivative:** \( g'(x) = \frac{3}{x^2} \)
---
### **Additional Consideration: \( f(x) = x^2 - x \)**
Although you mentioned "Consider \( f: x \rightarrow x^2 - x \)", let's determine its derivative using first principles.
\[
f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - (x + h) - (x^2 - x)}{h}
\]
\[
= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x - h - x^2 + x}{h}
\]
\[
= \lim_{h \to 0} \frac{2xh + h^2 - h}{h}
\]
\[
= \lim_{h \to 0} (2x + h - 1) = 2x - 1
\]
**Derivative:** \( f'(x) = 2x - 1 \)
---
### **Summary of Derivatives**
| **Function** | **Derivative** \( f'(x) \) |
|------------------------|----------------------------------|
| \( f(x) = x \) | \( 1 \) |
| \( f(x) = 2x \) | \( 2 \) |
| \( g(x) = -3x \) | \( -3 \) |
| \( f(x) = 4 \) | \( 0 \) |
| \( f(x) = 5 \) | \( 0 \) |
| \( g(x) = -7 \) | \( 0 \) |
| \( f(x) = x^2 \) | \( 2x \) |
| \( f(x) = 2x^2 \) | \( 4x \) |
| \( g(x) = -4x^2 \) | \( -8x \) |
| \( f(x) = 1 + x^2 \) | \( 2x \) |
| \( f(x) = 3 - x^2 \) | \( -2x \) |
| \( g(x) = x^3 \) | \( 3x^2 \) |
| \( f(x) = \frac{2}{x} \)| \( -\frac{2}{x^2} \) |
| \( g(x) = -\frac{3}{x} \)| \( \frac{3}{x^2} \) |
| \( f(x) = x^2 - x \) | \( 2x - 1 \) |
---
Feel free to ask if you need further explanations or assistance with any of these derivatives!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution