Name \( \begin{array}{l}\text { Composite Functions Practice } \\ f(x)=-2 x^{2}, g(x)=\frac{1}{2} x+4, h(x)=3 x-5, j(x)=x^{2}+1 \\ \text { Use the equations above to find each composite function. } \\ \)\begin{tabular}{l|l|l|}\hline \text { 1. }\( j(g(x))= \) & \text { 2. }\( g(f(x))= \) & \text { 3. }\( f(h(x))= \)\end{tabular}\end{array}.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Sure! Let’s dive into the world of composite functions using the given equations. 1. For \( j(g(x)) \): First, find \( g(x) = \frac{1}{2}x + 4 \). Now, plug this into \( j(x) = x^2 + 1 \): \[ j(g(x)) = j\left(\frac{1}{2}x + 4\right) = \left(\frac{1}{2}x + 4\right)^2 + 1 \] Expanding gives: \[ = \frac{1}{4}x^2 + 4x + 16 + 1 = \frac{1}{4}x^2 + 4x + 17 \] 2. For \( g(f(x)) \): First, find \( f(x) = -2x^2 \). Now, plug this into \( g(x) = \frac{1}{2}x + 4 \): \[ g(f(x)) = g(-2x^2) = \frac{1}{2}(-2x^2) + 4 \] Simplifying gives: \[ = -x^2 + 4 \] 3. For \( f(h(x)) \): First, find \( h(x) = 3x - 5 \). Now, plug this into \( f(x) = -2x^2 \): \[ f(h(x)) = f(3x - 5) = -2(3x - 5)^2 \] Expanding gives: \[ = -2(9x^2 - 30x + 25) = -18x^2 + 60x - 50 \] So, we have: 1. \( j(g(x)) = \frac{1}{4}x^2 + 4x + 17 \) 2. \( g(f(x)) = -x^2 + 4 \) 3. \( f(h(x)) = -18x^2 + 60x - 50 \)