Question
upstudy study bank question image url

Name \( \begin{array}{l}\text { Composite Functions Practice } \\ f(x)=-2 x^{2}, g(x)=\frac{1}{2} x+4, h(x)=3 x-5, j(x)=x^{2}+1 \\ \text { Use the equations above to find each composite function. } \\ \)\begin{tabular}{l|l|l|}\hline \text { 1. }\( j(g(x))= \) & \text { 2. }\( g(f(x))= \) & \text { 3. }\( f(h(x))= \)\end{tabular}\end{array}.

Ask by Sandoval Franklin. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( j(g(x)) = \frac{1}{4}x^{2} + 4x + 17 \) 2. \( g(f(x)) = -x^{2} + 4 \) 3. \( f(h(x)) = -18x^{2} + 60x - 50 \)

Solution

Sure! Let's find each of the composite functions step by step. ### Given Functions: - \( f(x) = -2x^{2} \) - \( g(x) = \frac{1}{2}x + 4 \) - \( h(x) = 3x - 5 \) - \( j(x) = x^{2} + 1 \) ### 1. \( j(g(x)) \) **Step 1:** Substitute \( g(x) \) into \( j(x) \): \[ j(g(x)) = j\left(\frac{1}{2}x + 4\right) = \left(\frac{1}{2}x + 4\right)^{2} + 1 \] **Step 2:** Expand the squared term: \[ \left(\frac{1}{2}x + 4\right)^{2} = \left(\frac{1}{2}x\right)^{2} + 2 \cdot \frac{1}{2}x \cdot 4 + 4^{2} = \frac{1}{4}x^{2} + 4x + 16 \] **Step 3:** Add 1: \[ j(g(x)) = \frac{1}{4}x^{2} + 4x + 16 + 1 = \frac{1}{4}x^{2} + 4x + 17 \] **Final Answer:** \[ j(g(x)) = \frac{1}{4}x^{2} + 4x + 17 \] --- ### 2. \( g(f(x)) \) **Step 1:** Substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(-2x^{2}) = \frac{1}{2}(-2x^{2}) + 4 \] **Step 2:** Simplify: \[ g(f(x)) = -x^{2} + 4 \] **Final Answer:** \[ g(f(x)) = -x^{2} + 4 \] --- ### 3. \( f(h(x)) \) **Step 1:** Substitute \( h(x) \) into \( f(x) \): \[ f(h(x)) = f(3x - 5) = -2(3x - 5)^{2} \] **Step 2:** Expand the squared term: \[ (3x - 5)^{2} = 9x^{2} - 30x + 25 \] **Step 3:** Multiply by -2: \[ f(h(x)) = -2(9x^{2} - 30x + 25) = -18x^{2} + 60x - 50 \] **Final Answer:** \[ f(h(x)) = -18x^{2} + 60x - 50 \] --- ### Summary of Composite Functions: | **1. \( j(g(x)) \)** | **2. \( g(f(x)) \)** | **3. \( f(h(x)) \)** | |----------------------|----------------------|-----------------------------| | \( \frac{1}{4}x^{2} + 4x + 17 \) | \( -x^{2} + 4 \) | \( -18x^{2} + 60x - 50 \) | Feel free to ask if you need further explanations or assistance!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Sure! Let’s dive into the world of composite functions using the given equations. 1. For \( j(g(x)) \): First, find \( g(x) = \frac{1}{2}x + 4 \). Now, plug this into \( j(x) = x^2 + 1 \): \[ j(g(x)) = j\left(\frac{1}{2}x + 4\right) = \left(\frac{1}{2}x + 4\right)^2 + 1 \] Expanding gives: \[ = \frac{1}{4}x^2 + 4x + 16 + 1 = \frac{1}{4}x^2 + 4x + 17 \] 2. For \( g(f(x)) \): First, find \( f(x) = -2x^2 \). Now, plug this into \( g(x) = \frac{1}{2}x + 4 \): \[ g(f(x)) = g(-2x^2) = \frac{1}{2}(-2x^2) + 4 \] Simplifying gives: \[ = -x^2 + 4 \] 3. For \( f(h(x)) \): First, find \( h(x) = 3x - 5 \). Now, plug this into \( f(x) = -2x^2 \): \[ f(h(x)) = f(3x - 5) = -2(3x - 5)^2 \] Expanding gives: \[ = -2(9x^2 - 30x + 25) = -18x^2 + 60x - 50 \] So, we have: 1. \( j(g(x)) = \frac{1}{4}x^2 + 4x + 17 \) 2. \( g(f(x)) = -x^2 + 4 \) 3. \( f(h(x)) = -18x^2 + 60x - 50 \)

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy