Question
e competencia 1 1. \( (2 x)(7 x+4)= \) Actividad de desarrollo 1. Realiza las siguientes multiplicaciones algebraicas y, en caso de ser necesario, reduce términos. g. \( \left(5 x^{3} y^{3}\right)\left(x^{2}-3 x y+y\right)= \) a. \( \left(6 x^{5} y^{6} z^{\prime}\right)\left(3 x^{2} y^{\prime} z^{\prime}\right)=1 \) h. \( \left(\frac{2 x^{4} y^{2}}{3}\right)\left(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12\right)= \) c. \( \left(\frac{2 x^{3} y^{1 / 2}}{3}\right)\left(\frac{3 x^{2} z^{4}}{5}\right)= \) i. \( (x-3)\left(x^{2}+3 x+9\right)= \)
Ask by Nichols Barker. in Mexico
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
Aquí están las soluciones a las multiplicaciones algebraicas:
1. \( (2x)(7x + 4) = 14x^{2} + 8x \)
2. \( (5x^{3}y^{3})(x^{2} - 3xy + y) = 5x^{5}y^{3} - 15x^{4}y^{4} + 5y^{4}x^{3} \)
3. \( (6x^{5}y^{6}z')(3x^{2}y'z') = 18x^{7}y^{6} \)
4. \( \left(\frac{2x^{4}y^{2}}{3}\right)\left(\frac{3x^{2}}{2} + x^{2} - \frac{xy}{3} - \frac{2x}{5} + 2x + 5y + 12\right) = \frac{75x^{6}y^{2} - 10x^{5}y^{3} + 48x^{5}y^{2} + 150x^{4}y^{3} + 360x^{4}y^{2}}{45} \)
5. \( \left(\frac{2x^{3}y^{1/2}}{3}\right)\left(\frac{3x^{2}z^{4}}{5}\right) = \frac{2x^{5}\sqrt{y} \times z^{4}}{5} \)
6. \( (x - 3)(x^{2} + 3x + 9) = x^{3} - 27 \)
Si tienes más preguntas o necesitas aclaraciones, no dudes en preguntar.
Solution
Simplify the expression by following steps:
- step0: Simplify the product:
\(\left(x-3\right)\left(x^{2}+3x+9\right)\)
- step1: Simplify the product:
\(x^{3}-27\)
Expand the expression \( (2 x)(7 x+4) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(2x\right)\left(7x+4\right)\)
- step1: Multiply the terms:
\(2x\left(7x+4\right)\)
- step2: Apply the distributive property:
\(2x\times 7x+2x\times 4\)
- step3: Multiply the terms:
\(14x^{2}+8x\)
Expand the expression \( (6 x^{5} y^{6} z')(3 x^{2} y' z') \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(6x^{5}y^{6}\times \left(z\right)^{\prime}\right)\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\)
- step1: Find the derivative:
\(\left(6x^{5}y^{6}\times 1\right)\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\)
- step2: Calculate:
\(6x^{5}y^{6}\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\)
- step3: Find the derivative:
\(6x^{5}y^{6}\left(3x^{2}\times 1\times \left(z\right)^{\prime}\right)\)
- step4: Find the derivative:
\(6x^{5}y^{6}\left(3x^{2}\times 1\times 1\right)\)
- step5: Multiply the terms:
\(6x^{5}y^{6}\times 3x^{2}\)
- step6: Multiply the numbers:
\(18x^{5}y^{6}x^{2}\)
- step7: Multiply the terms:
\(18x^{7}y^{6}\)
Expand the expression \( (5 x^{3} y^{3})(x^{2}-3 x y+y) \)
Simplify the expression by following steps:
- step0: Calculate:
\(\left(5x^{3}y^{3}\right)\left(x^{2}-3xy+y\right)\)
- step1: Calculate:
\(5x^{3}y^{3}\left(x^{2}-3xy+y\right)\)
- step2: Rewrite the expression:
\(5\left(x^{2}-3xy+y\right)x^{3}y^{3}\)
- step3: Rearrange the terms:
\(\left(x^{2}-3xy+y\right)\times 5x^{3}y^{3}\)
- step4: Apply the distributive property:
\(x^{2}\times 5x^{3}y^{3}-3xy\times 5x^{3}y^{3}+y\times 5x^{3}y^{3}\)
- step5: Multiply the terms:
\(5x^{5}y^{3}-15x^{4}y^{4}+5y^{4}x^{3}\)
Expand the expression \( (\frac{2 x^{3} y^{1 / 2}}{3})(\frac{3 x^{2} z^{4}}{5}) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(\frac{2x^{3}y^{\frac{1}{2}}}{3}\right)\left(\frac{3x^{2}z^{4}}{5}\right)\)
- step1: Remove the parentheses:
\(\frac{2x^{3}y^{\frac{1}{2}}}{3}\left(\frac{3x^{2}z^{4}}{5}\right)\)
- step2: Remove the parentheses:
\(\frac{2x^{3}y^{\frac{1}{2}}}{3}\times \frac{3x^{2}z^{4}}{5}\)
- step3: Reduce the fraction:
\(2x^{3}y^{\frac{1}{2}}\times \frac{x^{2}z^{4}}{5}\)
- step4: Multiply the terms:
\(\frac{2x^{3}y^{\frac{1}{2}}x^{2}z^{4}}{5}\)
- step5: Multiply the terms:
\(\frac{2x^{5}y^{\frac{1}{2}}z^{4}}{5}\)
- step6: Simplify:
\(\frac{2x^{5}\sqrt{y}\times z^{4}}{5}\)
Expand the expression \( (\frac{2 x^{4} y^{2}}{3})(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(\frac{2x^{4}y^{2}}{3}\right)\left(\frac{3x^{2}}{2}+x^{2}-\frac{xy}{3}-\frac{2x}{5}+2x+5y+12\right)\)
- step1: Remove the parentheses:
\(\frac{2x^{4}y^{2}}{3}\left(\frac{3x^{2}}{2}+x^{2}-\frac{xy}{3}-\frac{2x}{5}+2x+5y+12\right)\)
- step2: Calculate:
\(\frac{2x^{4}y^{2}}{3}\times \frac{75x^{2}-10xy+48x+150y+360}{30}\)
- step3: Reduce the fraction:
\(\frac{x^{4}y^{2}}{3}\times \frac{75x^{2}-10xy+48x+150y+360}{15}\)
- step4: Multiply the terms:
\(\frac{x^{4}y^{2}\left(75x^{2}-10xy+48x+150y+360\right)}{3\times 15}\)
- step5: Multiply the terms:
\(\frac{x^{4}y^{2}\left(75x^{2}-10xy+48x+150y+360\right)}{45}\)
- step6: Multiply the terms:
\(\frac{75x^{6}y^{2}-10x^{5}y^{3}+48x^{5}y^{2}+150x^{4}y^{3}+360x^{4}y^{2}}{45}\)
Aquí están las soluciones a las multiplicaciones algebraicas solicitadas:
1. **Multiplicación de \( (2 x)(7 x+4) \)**:
\[
(2 x)(7 x + 4) = 14x^{2} + 8x
\]
2. **Multiplicación de \( (5 x^{3} y^{3})(x^{2}-3 x y+y) \)**:
\[
(5 x^{3} y^{3})(x^{2} - 3 x y + y) = 5x^{5}y^{3} - 15x^{4}y^{4} + 5y^{4}x^{3}
\]
3. **Multiplicación de \( (6 x^{5} y^{6} z')(3 x^{2} y' z') \)**:
\[
(6 x^{5} y^{6} z')(3 x^{2} y' z') = 18x^{7}y^{6}
\]
4. **Multiplicación de \( \left(\frac{2 x^{4} y^{2}}{3}\right)\left(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12\right) \)**:
\[
\left(\frac{2 x^{4} y^{2}}{3}\right)\left(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12\right) = \frac{75x^{6}y^{2}-10x^{5}y^{3}+48x^{5}y^{2}+150x^{4}y^{3}+360x^{4}y^{2}}{45}
\]
5. **Multiplicación de \( \left(\frac{2 x^{3} y^{1 / 2}}{3}\right)\left(\frac{3 x^{2} z^{4}}{5}\right) \)**:
\[
\left(\frac{2 x^{3} y^{1 / 2}}{3}\right)\left(\frac{3 x^{2} z^{4}}{5}\right) = \frac{2x^{5}\sqrt{y}\times z^{4}}{5}
\]
6. **Multiplicación de \( (x-3)(x^{2}+3 x+9) \)**:
\[
(x-3)(x^{2}+3 x+9) = x^{3} - 27
\]
Si necesitas más ayuda o aclaraciones sobre algún paso, no dudes en preguntar.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
Para la primera multiplicación, \( (2x)(7x + 4) \), distribuyes \( 2x \) a ambos términos dentro del paréntesis. Al hacer esto, obtendrás \( 14x^2 + 8x \). ¡Así que ahí tienes tu respuesta elegante y lista para brillar! Ahora, hablemos de la expresión \( \left(5 x^{3} y^{3}\right)\left(x^{2}-3 x y+y\right) \). Al multiplicar, aplicas la propiedad distributiva: \( 5x^{3}y^{3} \cdot x^{2} - 15x^{4}y^{4} + 5x^{3}y^{4} \). Simplificando, el resultado es \( 5x^{5}y^{3} - 15x^{4}y^{4} + 5x^{3}y^{4} \). ¡Sigue practicando y serás un maestro de las multiplicaciones algebraicas!