Question
upstudy study bank question image url

e competencia 1 1. \( (2 x)(7 x+4)= \) Actividad de desarrollo 1. Realiza las siguientes multiplicaciones algebraicas y, en caso de ser necesario, reduce términos. g. \( \left(5 x^{3} y^{3}\right)\left(x^{2}-3 x y+y\right)= \) a. \( \left(6 x^{5} y^{6} z^{\prime}\right)\left(3 x^{2} y^{\prime} z^{\prime}\right)=1 \) h. \( \left(\frac{2 x^{4} y^{2}}{3}\right)\left(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12\right)= \) c. \( \left(\frac{2 x^{3} y^{1 / 2}}{3}\right)\left(\frac{3 x^{2} z^{4}}{5}\right)= \) i. \( (x-3)\left(x^{2}+3 x+9\right)= \)

Ask by Nichols Barker. in Mexico
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Aquí están las soluciones a las multiplicaciones algebraicas: 1. \( (2x)(7x + 4) = 14x^{2} + 8x \) 2. \( (5x^{3}y^{3})(x^{2} - 3xy + y) = 5x^{5}y^{3} - 15x^{4}y^{4} + 5y^{4}x^{3} \) 3. \( (6x^{5}y^{6}z')(3x^{2}y'z') = 18x^{7}y^{6} \) 4. \( \left(\frac{2x^{4}y^{2}}{3}\right)\left(\frac{3x^{2}}{2} + x^{2} - \frac{xy}{3} - \frac{2x}{5} + 2x + 5y + 12\right) = \frac{75x^{6}y^{2} - 10x^{5}y^{3} + 48x^{5}y^{2} + 150x^{4}y^{3} + 360x^{4}y^{2}}{45} \) 5. \( \left(\frac{2x^{3}y^{1/2}}{3}\right)\left(\frac{3x^{2}z^{4}}{5}\right) = \frac{2x^{5}\sqrt{y} \times z^{4}}{5} \) 6. \( (x - 3)(x^{2} + 3x + 9) = x^{3} - 27 \) Si tienes más preguntas o necesitas aclaraciones, no dudes en preguntar.

Solution

Simplify the expression by following steps: - step0: Simplify the product: \(\left(x-3\right)\left(x^{2}+3x+9\right)\) - step1: Simplify the product: \(x^{3}-27\) Expand the expression \( (2 x)(7 x+4) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(2x\right)\left(7x+4\right)\) - step1: Multiply the terms: \(2x\left(7x+4\right)\) - step2: Apply the distributive property: \(2x\times 7x+2x\times 4\) - step3: Multiply the terms: \(14x^{2}+8x\) Expand the expression \( (6 x^{5} y^{6} z')(3 x^{2} y' z') \) Simplify the expression by following steps: - step0: Simplify: \(\left(6x^{5}y^{6}\times \left(z\right)^{\prime}\right)\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\) - step1: Find the derivative: \(\left(6x^{5}y^{6}\times 1\right)\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\) - step2: Calculate: \(6x^{5}y^{6}\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\) - step3: Find the derivative: \(6x^{5}y^{6}\left(3x^{2}\times 1\times \left(z\right)^{\prime}\right)\) - step4: Find the derivative: \(6x^{5}y^{6}\left(3x^{2}\times 1\times 1\right)\) - step5: Multiply the terms: \(6x^{5}y^{6}\times 3x^{2}\) - step6: Multiply the numbers: \(18x^{5}y^{6}x^{2}\) - step7: Multiply the terms: \(18x^{7}y^{6}\) Expand the expression \( (5 x^{3} y^{3})(x^{2}-3 x y+y) \) Simplify the expression by following steps: - step0: Calculate: \(\left(5x^{3}y^{3}\right)\left(x^{2}-3xy+y\right)\) - step1: Calculate: \(5x^{3}y^{3}\left(x^{2}-3xy+y\right)\) - step2: Rewrite the expression: \(5\left(x^{2}-3xy+y\right)x^{3}y^{3}\) - step3: Rearrange the terms: \(\left(x^{2}-3xy+y\right)\times 5x^{3}y^{3}\) - step4: Apply the distributive property: \(x^{2}\times 5x^{3}y^{3}-3xy\times 5x^{3}y^{3}+y\times 5x^{3}y^{3}\) - step5: Multiply the terms: \(5x^{5}y^{3}-15x^{4}y^{4}+5y^{4}x^{3}\) Expand the expression \( (\frac{2 x^{3} y^{1 / 2}}{3})(\frac{3 x^{2} z^{4}}{5}) \) Simplify the expression by following steps: - step0: Simplify: \(\left(\frac{2x^{3}y^{\frac{1}{2}}}{3}\right)\left(\frac{3x^{2}z^{4}}{5}\right)\) - step1: Remove the parentheses: \(\frac{2x^{3}y^{\frac{1}{2}}}{3}\left(\frac{3x^{2}z^{4}}{5}\right)\) - step2: Remove the parentheses: \(\frac{2x^{3}y^{\frac{1}{2}}}{3}\times \frac{3x^{2}z^{4}}{5}\) - step3: Reduce the fraction: \(2x^{3}y^{\frac{1}{2}}\times \frac{x^{2}z^{4}}{5}\) - step4: Multiply the terms: \(\frac{2x^{3}y^{\frac{1}{2}}x^{2}z^{4}}{5}\) - step5: Multiply the terms: \(\frac{2x^{5}y^{\frac{1}{2}}z^{4}}{5}\) - step6: Simplify: \(\frac{2x^{5}\sqrt{y}\times z^{4}}{5}\) Expand the expression \( (\frac{2 x^{4} y^{2}}{3})(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(\frac{2x^{4}y^{2}}{3}\right)\left(\frac{3x^{2}}{2}+x^{2}-\frac{xy}{3}-\frac{2x}{5}+2x+5y+12\right)\) - step1: Remove the parentheses: \(\frac{2x^{4}y^{2}}{3}\left(\frac{3x^{2}}{2}+x^{2}-\frac{xy}{3}-\frac{2x}{5}+2x+5y+12\right)\) - step2: Calculate: \(\frac{2x^{4}y^{2}}{3}\times \frac{75x^{2}-10xy+48x+150y+360}{30}\) - step3: Reduce the fraction: \(\frac{x^{4}y^{2}}{3}\times \frac{75x^{2}-10xy+48x+150y+360}{15}\) - step4: Multiply the terms: \(\frac{x^{4}y^{2}\left(75x^{2}-10xy+48x+150y+360\right)}{3\times 15}\) - step5: Multiply the terms: \(\frac{x^{4}y^{2}\left(75x^{2}-10xy+48x+150y+360\right)}{45}\) - step6: Multiply the terms: \(\frac{75x^{6}y^{2}-10x^{5}y^{3}+48x^{5}y^{2}+150x^{4}y^{3}+360x^{4}y^{2}}{45}\) Aquí están las soluciones a las multiplicaciones algebraicas solicitadas: 1. **Multiplicación de \( (2 x)(7 x+4) \)**: \[ (2 x)(7 x + 4) = 14x^{2} + 8x \] 2. **Multiplicación de \( (5 x^{3} y^{3})(x^{2}-3 x y+y) \)**: \[ (5 x^{3} y^{3})(x^{2} - 3 x y + y) = 5x^{5}y^{3} - 15x^{4}y^{4} + 5y^{4}x^{3} \] 3. **Multiplicación de \( (6 x^{5} y^{6} z')(3 x^{2} y' z') \)**: \[ (6 x^{5} y^{6} z')(3 x^{2} y' z') = 18x^{7}y^{6} \] 4. **Multiplicación de \( \left(\frac{2 x^{4} y^{2}}{3}\right)\left(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12\right) \)**: \[ \left(\frac{2 x^{4} y^{2}}{3}\right)\left(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12\right) = \frac{75x^{6}y^{2}-10x^{5}y^{3}+48x^{5}y^{2}+150x^{4}y^{3}+360x^{4}y^{2}}{45} \] 5. **Multiplicación de \( \left(\frac{2 x^{3} y^{1 / 2}}{3}\right)\left(\frac{3 x^{2} z^{4}}{5}\right) \)**: \[ \left(\frac{2 x^{3} y^{1 / 2}}{3}\right)\left(\frac{3 x^{2} z^{4}}{5}\right) = \frac{2x^{5}\sqrt{y}\times z^{4}}{5} \] 6. **Multiplicación de \( (x-3)(x^{2}+3 x+9) \)**: \[ (x-3)(x^{2}+3 x+9) = x^{3} - 27 \] Si necesitas más ayuda o aclaraciones sobre algún paso, no dudes en preguntar.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Para la primera multiplicación, \( (2x)(7x + 4) \), distribuyes \( 2x \) a ambos términos dentro del paréntesis. Al hacer esto, obtendrás \( 14x^2 + 8x \). ¡Así que ahí tienes tu respuesta elegante y lista para brillar! Ahora, hablemos de la expresión \( \left(5 x^{3} y^{3}\right)\left(x^{2}-3 x y+y\right) \). Al multiplicar, aplicas la propiedad distributiva: \( 5x^{3}y^{3} \cdot x^{2} - 15x^{4}y^{4} + 5x^{3}y^{4} \). Simplificando, el resultado es \( 5x^{5}y^{3} - 15x^{4}y^{4} + 5x^{3}y^{4} \). ¡Sigue practicando y serás un maestro de las multiplicaciones algebraicas!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy