Answer
**Problem 13:**
The first three terms are \( 2 \), \( -\frac{2}{3} \), and \( \frac{2}{9} \).
**Problem 14:**
The series converges for all real numbers \( x \) with \( x < \frac{1}{3} \) or \( x > 1 \).
**Problem 15:**
\( 0.342 \) is equal to \( \frac{171}{500} \).
Solution
Let's address each of your problems one by one.
---
### **Problem 13**
**Given:**
- The sum to infinity of a geometric series is \( \frac{3}{2} \).
- The sum of the first three terms is \( \frac{14}{9} \).
**Find:** The first three terms of the series.
**Solution:**
1. **Sum to Infinity Formula:**
\[
S_\infty = \frac{a}{1 - r} = \frac{3}{2}
\]
Solving for \( a \):
\[
a = \frac{3}{2} (1 - r)
\]
2. **Sum of the First Three Terms:**
\[
S_3 = a + ar + ar^2 = \frac{14}{9}
\]
Substitute \( a = \frac{3}{2} (1 - r) \) into the equation:
\[
\frac{3}{2} (1 - r)(1 + r + r^2) = \frac{14}{9}
\]
3. **Simplify the Equation:**
\[
(1 - r)(1 + r + r^2) = 1 - r^3
\]
So,
\[
\frac{3}{2} (1 - r^3) = \frac{14}{9}
\]
\[
1 - r^3 = \frac{28}{27}
\]
\[
r^3 = 1 - \frac{28}{27} = -\frac{1}{27}
\]
\[
r = -\frac{1}{3}
\]
4. **Find \( a \):**
\[
a = \frac{3}{2} \left(1 - \left(-\frac{1}{3}\right)\right) = \frac{3}{2} \times \frac{4}{3} = 2
\]
5. **First Three Terms:**
\[
\begin{align*}
a &= 2 \\
ar &= 2 \times \left(-\frac{1}{3}\right) = -\frac{2}{3} \\
ar^2 &= 2 \times \left(\frac{1}{9}\right) = \frac{2}{9}
\end{align*}
\]
**Answer:**
The first three terms are \( 2 \), \( -\frac{2}{3} \), and \( \frac{2}{9} \).
---
### **Problem 14**
**Given:**
The series:
\[
1 + \frac{x}{2x - 1} + \left(\frac{x}{2x - 1}\right)^2 + \left(\frac{x}{2x - 1}\right)^3 + \ldots
\]
**Find:** The values of \( x \) for which the series converges.
**Solution:**
This is an **infinite geometric series** with:
- First term (\( a \)) = 1
- Common ratio (\( r \)) = \( \frac{x}{2x - 1} \)
**Convergence Criterion:**
\[
|r| < 1 \Rightarrow \left| \frac{x}{2x - 1} \right| < 1
\]
**Solving the Inequality:**
1. \[
\left| \frac{x}{2x - 1} \right| < 1 \Rightarrow |x| < |2x - 1|
\]
2. **Case 1:** \( 2x - 1 > 0 \) (i.e., \( x > \frac{1}{2} \))
\[
x < 2x - 1 \Rightarrow x > 1
\]
3. **Case 2:** \( 2x - 1 < 0 \) (i.e., \( x < \frac{1}{2} \))
- **Subcase a:** \( x \geq 0 \)
\[
x < -2x + 1 \Rightarrow 3x < 1 \Rightarrow x < \frac{1}{3}
\]
- **Subcase b:** \( x < 0 \)
\[
-x < -2x + 1 \Rightarrow x < 1 \quad (\text{Always true for } x < 0)
\]
**Combined Solutions:**
- From **Case 1:** \( x > 1 \)
- From **Case 2:** \( x < \frac{1}{3} \)
**Answer:**
The series converges for all real numbers \( x \) with \( x < \frac{1}{3} \) or \( x > 1 \).
---
### **Problem 15**
**Given:** The decimal \( 0.342 \)
**Find:** Its representation as a common fraction.
**Solution:**
1. Express the decimal as a fraction:
\[
0.342 = \frac{342}{1000}
\]
2. **Simplify the Fraction:**
- **Find the Greatest Common Divisor (GCD) of 342 and 1000:**
- \( 342 = 2 \times 3^2 \times 19 \)
- \( 1000 = 2^3 \times 5^3 \)
- **GCD:** 2
- Divide numerator and denominator by GCD:
\[
\frac{342}{1000} = \frac{342 \div 2}{1000 \div 2} = \frac{171}{500}
\]
**Answer:**
\( 0.342 \) expressed as a common fraction is \( \frac{171}{500} \).
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution